Jason R. Green edited $n^{th}$-order decay.tex  over 9 years ago

Commit id: afc63865482df7702d968d8f8f7feb8aecc011f6

deletions | additions      

       

We now shift our attention to $n^{th}$ order reactions. These $n^{th}$ order reactions are of the form of one reactant turning into product. The inequality between the statistical distance and Fisher divergence can also be derived for these irreversible decay reactions.  The time dependent rate coefficient is  \begin{equation}  k(t)\equiv(\frac{d\frac{1}{(S(t)^{n-1)}}}{dt})\equiv(n-1)\omega[A_0]^{n-1} k_n(t) \equiv (\frac{d\frac{1}{(S(t)^{n-1)}}}{dt})\equiv(n-1)\omega[A_0]^{n-1}  \end{equation}  As shown in equation 4, the statistical length is the integral of the cumulative time dependent rate coefficient over a period of time $\Delta{t}$. The statistical length is   \begin{equation}  \mathcal{L}(\Delta t)^2=\left[\int_{t_i}^{t_f}(n-1)\omega([A_0]^{n-1})dt\right]^2 \mathcal{L}_n(\Delta t)^2 = \left[\int_{t_i}^{t_f}(n-1)\omega([A_0]^{n-1})dt\right]^2  \end{equation}  Following length, the Fisher divergence is the integral of the cumulative time dependent rate coefficient squared over a period of time $\Delta{t}$. The Fisher divergence is  \begin{equation}  \frac{\mathcal{J}( \Delta \frac{\mathcal{J}_n(\Delta  t)}{\Delta t}=\int_{t_i}^{t_f}{(n-1)^2\omega^2}([A_0]^{n-1})^{2} t} = \int_{t_i}^{t_f}{(n-1)^2\omega^2}([A_0]^{n-1})^{2}  dt \end{equation}  The inequality becomes  \begin{equation}