Jason R. Green edited $n^{th}$-order decay.tex  over 9 years ago

Commit id: af52b02f78ec4ae5b4d1bb03d92cf02bfc3e4548

deletions | additions      

       

\begin{equation}  k_n(t) \equiv (\frac{d\frac{1}{(S(t)^{n-1)}}}{dt})\equiv(n-1)\omega[A_0]^{n-1}  \end{equation}  The nonlinearity of the rate law leads to solutions that depend on concentration. As shown in equation 4, the statistical length is the integral of the cumulative time dependent rate coefficient over a period of time $\Delta{t}$. The statistical length is \begin{equation}  \mathcal{L}_n(\Delta t)^2 = \left[\int_{t_i}^{t_f}(n-1)\omega([A_0]^{n-1})dt\right]^2   \end{equation} 

\begin{equation}  \frac{\mathcal{J}_n(\Delta t)}{\Delta t} = \int_{t_i}^{t_f}{(n-1)^2\omega^2}([A_0]^{n-1})^{2} dt  \end{equation}  Both the length squared and the divergence are $(n-1)^2\omega^2([A_0]^{n-1})^2\Delta t^2$: the bound holds when there is no static or dynamic disorder, and a single rate coefficient is sufficient for the irreversible decay process. The nonlinearity of the rate law leads to solutions that depend on concentration. This concentration dependence is also present in both $\mathcal{J}$ and $\mathcal{L}$.