Jonathan Nichols edited Kinetic Model With Dynamic Disorder.tex  over 9 years ago

Commit id: 7a1537ad7a5f722d9bf949be8c14ac63269621fb

deletions | additions      

       

\mathcal{J}_{KWW}(\Delta{t})=\Delta t [A_0]\beta^2\omega^{2\beta} \ln(t)\bigg|_{t_i}^{t_f}  \end{equation}  These results closely match the results of first order irreversible decay, where $\mathcal{L}_{KWW}(\Delta{t})=\omega^{\beta}t^{\beta}\bigg|_{t_i}^{t_f}$, $\mathcal{J}_{KWW}(\Delta{t})=\frac{\Delta t\beta^{2}\omega^{2\beta}t^{2\beta-1}}{2\beta-1}\bigg|_{t_i}^{t_f}$, and when $\beta=\frac{1}{2}$, $\mathcal{J}_{KWW}(\Delta{t})=\Delta t \omega^{2\beta} \ln(t)\bigg|_{t_i}^{t_f}$.  \section{Notes on graphs yet to be done}  Figure 1(a) shows how the inverse of the survival function multiplied by $[A_0]$ versus time depends on the value of $\beta$. There is only a linear dependence on time when $\beta=1$, which corresponds to exponential kinetics and a time independent rate coefficient $k(t)\rightarrow\omega $. For all $\beta$ values higher than 0 and less than 1, the second order s