Jason R. Green edited Nonlinear irreversible kinetics.tex  over 9 years ago

Commit id: 6be696b805b0aac0abefb45255b6976f311918d7

deletions | additions      

       

\end{equation}  which we will use as the input to our theory.  From the survival function, we define the time-dependent rate coefficient through an appropriate time derivative depending on the total order of reaction. For first-order irreversible decay reactions, $A\to \textrm{products}$ and $i=1$, the rate law defines the time-dependent rate coefficient  \begin{equation}  k_1(t) \equiv   \end{equation}  In traditional kinetics, the rate coefficient irreversible decay is assumed constant, in which case $k(t)\to\omega$. We define $k(t)$ from the appropriate survival function and rate law reaction  \begin{equation}  k_i(t) \equiv  \usepackage{amsmath,mathtools}  \begin{cases}  \displaystyle\frac{-d\ln S_1(t)}{dt} & \text{if } i = 1 \\  \displaystyle\frac{d}{dt}\frac{1}{S(t)^{i-1}} & \text{if } i \geq 2 2.  \end{cases}  \end{equation} In traditional kinetics, the rate coefficient of irreversible decay is assumed constant, in which case $k(t)\to\omega$.