Jason R. Green edited Second-order decay.tex  over 9 years ago

Commit id: 5c8ccdb237a78eca6ec4f969a6b703fd751c2c20

deletions | additions      

       

% C_A(t) = \frac{C_A(0)}{1+\omega tC_A(0)}  %\end{equation}  \begin{equation}  S(t) S_2(t)  = \frac{C_A(t)}{C_A(0)} \frac{C_2(t)}{C_2(0)}  = \frac{1}{1+\omega tC_A(0)} tC_2(0)}  \end{equation}  In second order, we define the time dependent rate coefficient as the time derivative of the inverse of the survival function[insert citation]  \begin{equation}  k_2(t) \equiv \frac{d}{dt}S(t)^{-1} \frac{d}{dt}S_2(t)^{-1}  = \omega C_A(0) C_2(0)  \end{equation}  $S(t)$ has been changed to fit a second order model of irreversible decay. From this definition of $k(t)$, we define a statistical distance. The statistical distance represents the distance between two different probability distributions, which can be applied to survival functions and rate coefficients.[cite] Integrating the arc length of the survival curve , $\frac{1}{S(t)}$, gives the statistical length  %\begin{equation}