Jason R. Green edited Irreversible kinetics.tex  over 9 years ago

Commit id: 199057d3847344965b9e4e9d0c0a02a6bd8db20c

deletions | additions      

       

\section{Homonuclear irreversible kinetics}  We consider the irreversible reaction types  \begin{equation} 

\begin{equation}  S_i(t) = \frac{C_i(t)}{C_i(0)} = \sqrt[i-1]{\frac{1}{1+(i-1)\omega tC_i(0)^{i-1}}},  \end{equation}  which we will use as the input to our theory. From the survival function, we define the time-dependent rate coefficient through an appropriate time derivative of the survival function, which depends on the total order of reaction. For first-order irreversible decay reactions, $A\to B$, the rate law defines the time-dependent rate coefficient  \begin{equation}  k_1(t) \equiv \frac{-d\ln S(t)}{dt}  \end{equation}  In traditional kinetics, irreversible decay is only dependent on one rate coefficient, $k(t)\to\omega$.  %The time-dependent rate coefficient, $k(t)$, is determined by integrating the rate law of the reaction and forming a survival function from the integrated rate law.  We define $k(t)$ from the appropriate survival function and rate law  \begin{equation}  k_i(t) \equiv \frac{d}{dt}\frac{1}{S(t)^{i-1}}\quad\quad\textrm{for}\quad i=2,3,\ldots.  \end{equation}