Vadim Kosoy edited The_following_theorem_is_the__.tex  about 8 years ago

Commit id: f222f51823bd487c5005cdfcea2b4f7510adffdc

deletions | additions      

       

\begin{theorem}  \label{thm:ort}  Fix $\Gamma$ a growth space of type $(2,2)$ and $\mathcal{E}$ and error space of rank 2. Assume there is $\zeta \in \mathcal{E}$ s.t. $\log $(0,\log  \max(-\log \zeta, 1) 1))  \in \Gamma$\footnote{If $(0, \log(k+1)), (0, \log(j+1)) \in \Gamma$ then this condition holds for any $\mathcal{E}$ since we can take $\zeta = 2^{-h}$ for $h$ polynomial.}. Consider $(\mu,f)$ a distributional estimation problem and $P$ an $\mathcal{E}(\Gamma)$-optimal predictor for $(\mu,f)$. Then, $P$ is also an $\mathcal{E}^{\frac{1}{2}\sharp}(\Gamma)$-optimal predictor for $(\mu,f)$. \end{theorem}