Sean Maguire generating latex version of article  about 11 years ago

Commit id: a63631e8c89b8492566f44c8be56f9d5d72d6f78

deletions | additions      

       

\section{Project /section{Project  Summary}\\Animals are bombarded with ever changing visual, acoustic, chemical, tactile and social information as they navigate their environment. The central nervous system integrates these stimuli with internal information and past experience in order to guide adaptive behavioral decisions (i.e. approach or avoidance of a salient stimulus). Even controlled laboratory presentations of stimuli are not processed in the brain with static stimulus-response chains, but rather processing depends on the state of local and distributed brain networks. The network state is the emergent structure of ongoing activity in the brain: the response properties of one neural element (be it a single neuron, assembly of neurons or a brain region) is affected by the modulatory activity of the network it is embedded in \cite{Bressler:2007ty}. Thus neural context (i.e. network state) is a determinative factor in sensory processing, influencing not only the perception of stimuli but also behavioral decision-making.\\  \\Across vertebrates, social behavior is linked to a core network of brain regions called the social decision making network (SDMN). The SDMN is comprised of 11 brain regions, many of which are bidirectionally connected to one another and are sensitive to sex steroid hormones (SSH). They have been linked to a large variety of social and sexual behaviors \cite{OConnell:2011hk, Newman:1999ve, Crews:2003il, Goodson:2005gb}.\\  \\My overarching hypothesis is that neural context in the SDM network represents an animals internal computing framework for interpreting external social information and that SSHs preconfigure the neural context of the network. Consistent with this hypothesis, I expect that ongoing neural activity will be influenced by SSHs and that this neuromodulatory patterning will be correlated to the neural responses evoked by social interaction. As a general approach I will exploit the different time courses of two neural activity measures: cytochrome oxidase and egr-1 within the same animals to measure ongoing neural activity and also activity evoked by social interactions.\\         

\begin{document}  /sectionProject Summary \section{Project Summary}  \\Animals are bombarded with ever changing visual, acoustic, chemical,  tactile and social information as they navigate their environment. The  central nervous system integrates these stimuli with internal  information and past experience in order to guide adaptive behavioral  decisions (i.e. approach or avoidance of a salient stimulus). Even  controlled laboratory presentations of stimuli are not processed in the  brain with static stimulus-response chains, but rather processing  depends on the state of local and distributed brain networks. The  network state is the emergent structure of ongoing activity in the  brain: the response properties of one neural element (be it a single  neuron, assembly of neurons or a brain region) is affected by the  modulatory activity of the network it is embedded in  \cite{Bressler:2007ty}. Thus neural context (i.e. network state) is a  determinative factor in sensory processing, influencing not only the  perception of stimuli but also behavioral decision-making.\\\\Across  vertebrates, social behavior is linked to a core network of brain  regions called the social decision making network (SDMN). The SDMN is  comprised of 11 brain regions, many of which are bidirectionally  connected to one another and are sensitive to sex steroid hormones  (SSH). They have been linked to a large variety of social and sexual  behaviors  \cite{OConnell:2011hk, Newman:1999ve, Crews:2003il, Goodson:2005gb}.\\\\My  overarching hypothesis is that neural context in the SDM network  represents an animals internal computing framework for interpreting  external social information and that SSHs preconfigure the neural  context of the network. Consistent with this hypothesis, I expect that  ongoing neural activity will be influenced by SSHs and that this  neuromodulatory patterning will be correlated to the neural responses  evoked by social interaction. As a general approach I will exploit the  different time courses of two neural activity measures: cytochrome  oxidase and egr-1 within the same animals to measure ongoing neural  activity and also activity evoked by social interactions.\\  \begin{figure}[htbp]  \centering