Ni edited untitled.tex  about 8 years ago

Commit id: 08f7724cae60811ff4b1ec3943421f616f057e52

deletions | additions      

       

\section{Angle Bisector Theorem}  The Angle Bisector Theorem states that given triangle $\triangle ABC$ and angle bisector AD, where D is on side BC, then $\frac cm = \frac bn$. Likewise, the converse of this theorem holds as well.  \section{3-D Area} \section{Uncommon 3-D Areas}  Simplify these problems to 2-D problems and sum them up to find Surface Area. \\  \section{3-D \section{Uncommon 3-D  Formulas} \textbf{Euler's Polyhedral Formula}  Let $P$ be any convex polyhedron, and let $V$, $E$ and $F$ denote the number of vertices, edges, and faces, respectively. Then $V-E+F=2$. \\  \textbf{Common Areas}  Area of a triangle = \section{Advanced Uncommon Theorems}  \textbf{Menelaus' Theorem}  A necessary and sufficient condition for points $P, Q, R$ on the respective sides $BC, CA, AB$ (or their extensions) of a triangle $ABC$ to be collinear is that  $BP\cdot CQ\cdot AR = PC\cdot QA\cdot RB$ where all segments in the formula are directed segments.[asy] defaultpen(fontsize(8)); pair A=(7,6), B=(0,0), C=(10,0), P=(4,0), Q=(6,8), R; draw((0,0)--(10,0)--(7,6)--(0,0),blue+0.75); draw((7,6)--(6,8)--(4,0)); R=intersectionpoint(A--B,Q--P); dot(A^^B^^C^^P^^Q^^R); label("A",A,(1,1));label("B",B,(-1,0));label("C",C,(1,0));label("P",P,(0,-1));label("Q",Q,(1,0));label("R",R,(-1,1)); [/asy]