Purpose and aims

Wildfires are a natural phenomenon but human activities are altering both the driving factors (climate) and the vulnerability (land-use factors) of ecosystems, increasing both frequency and severity of fire impacts. This is an issue of concern given that wildfires play a major role in the global carbon cycle by affecting carbon and nitrogen storage in ecosystems. Yet, our knowledge of early post-fire carbon (C) and nitrogen (N) (hereafter abbreviated as CN) dynamics has been severely limited by the lack of cross-scale (from soil to plant to ecosystem) and cross-landscape (wetlands to uplands, managed and unmanaged land) studies. Understanding the mechanisms causing variability in CN dynamics (e.g., CN accumulation) , in heterogeneous landscapes, is critical for predicting changes in C and N storage with more frequent disturbance. Given this immediate research need, I propose an ambitious research program to investigate the impact of wildfires on the C and N cycle in the boreal landscape, capitalizing on a recent stand-replacing wildfire in Sweden. With an array of paired pre- and post-fire data, which is rare in wildfire ecosystem research, I aim to address whether pre-disturbance and initial post-disturbance conditions can be used to formulate predictions of post-disturbance ecosystem development. I will employ a novel multidiciplinary framework, which integrates ecological process, like plant community development, into the biogeochemical processes. This much needed integration makes it possible to improve and add new mechanisms to current ecosystem models and to answer under what conditions is the system is most vulnerable to change under frequent and severe wildfires. Three question-based work packages are described below as the basis of this wildfire research program:

  1. CN losses. CN losses. Where in the landscape do the largest C and N losses occur, and what factors control losses? How large are CN combustion losses relative to C transformed into charcoal and hydrologically-exported CN following fire?

  2. CN pool development. What is the relative importance of abiotic (e.g. soil moisture, temperature) and biotic (e.g. plant traits) factors in generating variation in post-fire recovery rate of C and N pools at different spatial scales?

  3. Vegetation development. What controls species and trait assembly post-fire? What is the role of niche-based processes (abiotic effects: environmental filtering, and biotic effects: legacy effects, regeneration traits) in contrast to neutral processes (stochasticity, priority effects)?