Rikki edited untitled.html  about 8 years ago

Commit id: 02b33a19f1d340d2c7405e692e2bfbb756c281e9

deletions | additions      

       

The Chinese Remainder Theorem is used in discrete mathematics to find a unique solution up to a desired modulus. 
The Chinese Remainder Theorem states: If \(m_1\) and \(m_2\) are relatively prime, the the system of congruences \(N\equiv a_1\) (\(mod\)  a_1\) (mod   class="ltx_Math" contenteditable="false" data-equation="m_1">\(m_1\)), \(N\equiv a_2\) (\(mod\)  a_2\) (mod   class="ltx_Math" contenteditable="false" data-equation="m_2">\(m_2\)) has a unique solution \(mod\)  (mod   class="ltx_Math" contenteditable="false" data-equation="m_1m_2.">\(m_1m_2.\)

From data-equation="m_1m_2">\(m_1m_2\)).

From  this theorem, we can generalize and say that if \(m_1\) and \(m_2\) are relatively prime, then we can allow \(a_1\) and \(a_2\) be any two integers. There will exist an integer \(N\) that satisfies the expressions above. 

With \(\left(m_1,m_2\right)=1,\) there exists \(x\) and \(y\) that satisfies \(m_1x+m_2y=1.\) We can find \(x\) and \(y\) by plugging in numbers to find solutions that work or we can use the Euclidean Algorithm and back substitution to find the solutions. 

From here, the solution to the system of congruences by using our equation: \(N=m_1a_2x+m_2a_1y\)