Vladislav Basimov edited text_xi__k_begin_equation__.tex  almost 8 years ago

Commit id: de30d21b67ebba5836e2eac5fd0519c351085469

deletions | additions      

       

\text {  Поскольку предполагается, что моделирование эксперимента проводится в обычной комнате (не в профессиональной звукоизолирующей звукоизолированной  студии), то могут случайно попасть в измерения посторонние звуки-шумы, для обозначения которых введём случайную величину $\xi_{k}$: } \begin{equation}   x_{k} = a\cdot x(k)+k\cdot sin(k) + \xi_{k} \nonumber \\  \end{equation}  \text {  Микрофон при записи данных может накладывать свои помехи на входящий сигнал. Например, скачки напряжения, высокий износ микрофона, порождающий ненужные возмущения диафрагмы микрофона. По этой причине, на вход подается сигнал с помехами наблюдения $\eta_{k}$:  }  \begin{equation}  {y_{k} = b\cdot x_{k}+ \eta_{k}}\nonumber \\  \end{equation}  \text {  где $b = 0.93$. Задача состоит в том, чтобы по некоторым не совсем верным показаниям сенсора $z_{k}$ найти хорошее приближение для истинного вида амплитуды входящего сигнала $x_{k}$, которое обозначим $x_{k}^{opt}$.  Уравнения для значения амплитуды и показания сенсора будут иметь следующий вид:   }  \begin{equation}  \left\{\begin{matrix}  x_{k+1} = x_{k} + u{k} + \xi_{k}  \\   y_{k} = x_{k}+\eta_{k}  \end{matrix}\right.\tag{1}  \end{equation}  \text {  где $u_{k}$ - это известная величина, контролирующая эволюцию системы, известная по построенной физической модели, $\xi_{k}$ - ошибка модели (случайная величина), $\eta_{k}$ - ошибка сенсора (случайная величина)  \\Нам известно:}  \begin{itemize}  \item cредние значения ошибок равны нулю: $E\xi_{k} = E\eta_{k} = 0$;  \item известны дисперсии случайных величин, которые не зависят от $k$: $\sigma_{\xi}^2$ и $\sigma_{\eta}^2$  \item все случайные ошибки независимы друг от друга.щз  \end{itemize}  Для описания работы алгоритма возьмем $k$-й шаг шаг и предположим, что для него уже найдено $x_{k}^{opt}$ - значение, отфильтрованное фильтром Калмана, и которое довольно хорошо приближает истинное значение амплитуды. Поскольку заранее известно управление $u$ из вашеописанной системы уравнений, то можно предположить, что на следующем шаге система изменится согласно этому закону и значение с сенсора будут близки к $x_{k}^{opt} + u_{k}$.  \textbf{Идея Калмана:} \textit{необходимо получить наилучшее приближение к истинному значению амплитуды $x_{k+1}$. Для этого нужно выбрать "золотую середину" между показанием неточного сенсора и ожидаемым значением.}\cite{Kalman_filter}  Для этого введем Коэффициент Калмана $K$, который зависит от шага итерации. Показанию сенсора будет соответствовать вес $K_{k+1}$, а предсказанному значению $1-K_{k+1}$:  \begin{equation}  x_{k+1}^{opt} = K_{k+1} + y_{k+1} + (1-K_{k+1})\cdot(x_{k}^{opt} + u_{k})\tag{2}  \end{equation}  Необходимо выбрать коэффициент Калмана $K_{k+1}$ таким, чтобы получившееся оптимальное значение амплитуды $x_{k+1}^{opt}$ было бы наиболее близко к истинному .   В общем случае, для нахождения значения коэффициента Калмана необходимо минимизировать ошибку:  \begin{equation} e_{k+1} = x_{k+1}-x_{k+1}^{opt}. \nonumber \\  \end{equation}  Подставляя данное выражение в (2) получаем:   \begin{equation} \nonumber \\  e_{k+1} = (1-K_{k+1})(e_{k+1}+\xi_{k+1})-K_{k+1}\cdot\eta_{k+1} \nonumber \\  \end{equation}   Для минимизации ошибки будем минимизировать среднее значение от квадрата ошибки:  \begin{equation}   E(e^2_{k+1}) \rightarrow min\nonumber \\  \end{equation}   Выражение выше принимает минимальное значение в том случае, когда производная равна нулю:  Коэффициент Калмана примет следующий вид:  \begin{equation}   -2\cdot(1-K_{k+1})\cdot(Ee^{2}_{k}+\sigma_{\xi}^2)+2\cdot K_{k+1}\cdot \sigma_{\eta}^2=0\nonumber \\  \end{equation}  Раскрываем скобки:  \begin{equation}  -Ee^{2}_{k}–\sigma_{\xi}^2+K_{k+1}\cdot Ee^{2}_{k}+K_{k+1}\cdot \sigma_{\xi}+K_{k+1}\cdot \sigma_{\eta}^2=0\nonumber \\  \end{equation}  Коэффициент Калмана примет следующий вид:  \begin{equation}  K_{k+1}=\frac{Ee^{2}_{k} + \sigma_{\xi}^2}{Ee^{2}_{k} + \sigma_{\xi}^2 + \sigma_{\eta}^2}\nonumber \\  \end{equation}