Nicole Helbig edited RDMFT1.tex  over 9 years ago

Commit id: d9e028a5b1e094c1334a67b5e74192b8a3014da8

deletions | additions      

       

\begin{eqnarray}  \Omega(N,\{\vartheta\} ,\{\phi_i(\mathbf{r})\})= E - \mu \left(\sum_{i=1}^\infty 2sin^2( 2\pi\vartheta_i)-N\right)-\sum_{i,j=1}^\infty \lambda_{ij}(\langle\phi_i|\phi_j\rangle-\delta_{ij})  \end{eqnarray}  which has to be stationary with respect to variations in $\{\vartheta_i\}$, $\{\phi_i(\mathbf{r})\}$ and $\{\phi_i^{*}(\mathbf{r})\}$. In any practical calculation the infinite sums have to be truncated including only a finite number of occupation numbers and natural orbitals. However, since the occupation numbers $n_j$ decay very quickly for $j>N$ this is not problematic.  %\begin{eqnarray}  %\delta \Omega = 4sin(4\pi\vartheta_i)\big[\mu-\frac{\partial E}{\partial n_{i}}\big] d\vartheta+  %\sum_i \int d\mathbf{r} \delta \phi_i^{*}(\mathbf{r})\Big[\frac{\delta E}{\delta \phi_{i}^{*}(\mathbf{r})}-\sum_{k}\lambda_{ki}\phi_{k}(\mathbf{r})\Big ]+\nonumber\\