Matthieu Verstraete edited details.tex  over 9 years ago

Commit id: aec3b2971f9522244244757a11c6d06a881707d0

deletions | additions      

       

If certain state energies are degenerate, the Young diagram ``projection'' contains an additional loop, ensuring that the same diagram is not used to symmetrize successive states: this would yield the same spatial part for each wave function in the degenerate sub-space. A given diagram is only used once in the sub-space, on the first state whose projection has significant weight.  The implementation also allows for the treatment of bosons, in which case the total wave function has to be symmetric under exchange of two particles. In this case, none of the Young diagrams is forbidden, since one can always find use  a spin part symmetrized with the mirror Young diagram,  such that the total wave function becomes symmetric. In order for the (anti-)symmetrization to work properly one needs to declare each particle in the calculation to be a fermion, a boson, or an anyon. In the latter case, the corresponding spatial variables are not considered at all in the (anti-)symmetrization procedure. One can also have more than one type of fermion or boson, in which case the symmetric requirements are only enforced for particles belonging to the same type.