Xavier Andrade edited Abstract.tex  over 9 years ago

Commit id: 92ce7ccbc5f25e6f9f32a94c533a908cf78dbde0

deletions | additions      

       

Real-space grids are a powerful alternative for the simulation of electronic systems. One of the main advantages of the approach is the flexibility and simplicity of working directly in real space where the different fields are directly discretized on a grid, combined with competitive numerical performance and a great potential for parallelization. These properties constitute a great advantage at the time of implementing and testing new physical models. Based on our experience with the Octopus code, in this article we discuss how the real-space approach has allowed for the recent development of new ideas for the simulation of electronic systems.   Among these applications are approaches to calculate reponse properties, modeling of photoemission, optimal control of quantum systems, simulation of plasmonic systems, and the exact solution of the Schroedinger Schr\"odinger  equation for low-dimensionality systems.