Lorenzo Stella edited Plasmonics.tex  over 9 years ago

Commit id: 926f3deea2813d5796b4e71792120d92dd5922b7

deletions | additions      

       

structure calculations. A nanoplasmonic system --- e.g., made by metal  nanoparticles (MNPs) --- can be a few tens of nm across, while the  region of strong field enhancement --- e.g., in the gap between two  MNPs --- can be less than 1 nm across (\textbf{CITE} Baumberg). across.\cite{Savage_2012}  The field enhancement, $h\left({\bf r}\right)$, is essentially a classical  observable, defined as  % 

Large field enhancements are the key to single molecule surface-enhanced  Raman spectroscopy (SERS) and values as large as $h\approx1000$ (the  intensity of the SERS signal scales as $h^{4}$) are predicted by  classical electromagnetic calculations. (\textbf{CITE} Katrin Kneipp  et al 2002 J. Phys.: Condens. Matter 14 R597 doi:10.1088/0953-8984/14/18/202) calculations.\cite{Kneipp_2002}  In classical calculations the electronic response is model by the  macroscopic permittivity of the material. The classical Drude model  gives the following simple and robust approximation of the metal (complex) 

the plasma frequency, $\omega_{p}$, and the relaxation rate, $\gamma$,  are: $\epsilon_{\infty}=9.5$, $\hbar\omega=8.95$ eV and $\hbar\gamma=69.1$  meV.(\textbf{CITE} Grady CPL 2004) Non-local correction to the Drude  model can be also included by considering the plasmon dispersion.  (\textbf{CITE} Dobson, J. F.; Le, H. M. High-Frequency Hydrodynamics  and Thomas-Fermi Theory. J. Mol. Struct. (THEOCHEM) 2000, 501, 327\textminus{}338.  ) dispersion.\cite{Dobson_2000}  The metal (complex) permittivity then reads %  \begin{equation}\label{eq:non-local-optics}  \epsilon_{r}\left({\bf k},\omega\right)=\epsilon_{\infty}-\frac{\omega_{p}^{2}}{\omega\left(\omega+i\gamma\right)-\beta^{2}v_{F}^{2}{\bf k}^{2}}\;,