Iris Theophilou edited RDMFT1.tex  over 9 years ago

Commit id: 082bc06d9253eb9decb7552240c46f79721bf9f7

deletions | additions      

       

\begin{eqnarray}  \lambda_{ki}=h_{ki}n_i+\int d\mathbf{r} \frac{\delta V_{ee}}{\delta \phi_i^{*}(\mathbf{r})}\phi_k^{*}(\mathbf{r}).  \end{eqnarray}  At the extremum, the matrix of the Lagrange multiplyers must be Hermitian, i.e. $\lambda_{ki}=\lambda_{ik}^{*}$ \begin{eqnarray}\label{lambdaeq}  \lambda_{ki}-\lambda_{ik}^{*}=0  \end{eqnarray}  Then one can define the off diagonal elements of a Hermitian matrix $\mathbf{F}$ as:  \begin{eqnarray}  F_{ki}=\theta(i-k)(\lambda_{ki}-\lambda^{*}_{ik})+\theta(k-i)(\lambda^{*}_{ik}-\lambda_{ki})  \end{eqnarray}  where $\theta$ is the unit-step Heavside function. This matrix is diagonal at the extremum and hence the matrix $\mathbf{F}$ and $\gamma$ can be brought simultaneously to a  diagonal form. form at the solution.