Adam Ginsburg Merge branch 'master' of github.com:keflavich/thesis  about 11 years ago

Commit id: c88690a3bf47d2f0fd61091d94e10ba00714fe23

deletions | additions      

    Binary files a/figures_chH2CO/W49_RGB_aplpy.png and b/figures_chH2CO/W49_RGB_aplpy.png differ        

or $\sim60$ pc at $D=2.8$ kpc \citep{Roman-Duval2009}. It is detected in \oneone  absorption at all 6 locations observed in \formaldehyde, but \twotwo is only  detected in front of the W49 HII region because of the higher signal-to-noise at  that location. The detected \thirteenco and \formaldehyde lines are fairly  narrow, with \formaldehyde FWHM $\sim1.3$-$2.8$ \kms and \thirteenco widths  from 1.8-5.9 \kms. The \thirteenco lines are 50\% wider than the \formaldehyde  lines.  The highest \thirteenco contours are observed as a modest IRDC, but no dust  emission peaks are observed at 500 \um or 1.1 mm. This is an indication that 

% without a corresponding \twotwo detection.  Comparing the integrated \formaldehyde lines to the integrated \thirteenco  lines, we have $N_(\ortho) the integrated \formaldehyde column densities are  $N_{\ortho}  = 2.03\ee{12} $ and $1.56\ee{12}$ \persc for G43.16 and G43.17 respectively.  The \thirteenco integrated spectra have brightness $T_{MB} = 2.6$ K and $1.3$ K  for G43.16 and G43.17 respectively. Using the cloud-averaged excitation  temperature for this cloud, $\tau_{13}=2.3$ and $0.6$ respectively, so  \citet{Roman-Duval2010a} equation 3 yields column densities $N_{13} = 6.2\ee{15}  $ and $1.6\ee{15}$ \percc respectively. Assuming an abundance relative to \hh  $X_{13} = 1.77\ee{-6}$, 1.8\ee{-6}$ \citep[consistent with ][]{Roman-Duval2010a},  the resulting \hh column densities are 3.5\ee{21} and 9.0 \ee{20} \percc respectively. The abundances of \ortho relative to \thirteenco are 3.2\ee{-4} and 9.8\ee{-4} respectively, or relative to \hh, 5.8\ee{-10} and 1.7\ee{-9}, which are entirely consistent with other measurements of $X_{\formaldehyde}$. $X_{\ortho}$.  These are relatively modest column densities, with $A_V=17$ and 4.5. These measurements for a specific cloud validate the statistical argument made  in \citet{Ginsburg2011a}. However, upon closer inspection of the cloud         

\newcommand{\formaldehyde}{\ensuremath{\textrm{H}_2\textrm{CO}}\xspace}  \newcommand{\formaldehydeIso}{\ensuremath{\textrm{H}_2~^{13}\textrm{CO}}\xspace}  \newcommand{\methanol}{\ensuremath{\textrm{CH}_3\textrm{OH}}\xspace}  \newcommand{\ortho}{\ensuremath{\textrm{o-H}_2\textrm{CO}}} \newcommand{\ortho}{\ensuremath{\textrm{o-H}_2\textrm{CO}}\xspace}  \newcommand{\oneone}{\ensuremath{1_{10}-1_{11}}\xspace}  \newcommand{\twotwo}{\ensuremath{2_{11}-2_{12}}\xspace}  \newcommand{\threethree}{\ensuremath{3_{12}-3_{13}}\xspace} 

\newcommand{\peryr}{\ensuremath{\textrm{yr}^{-1}}\xspace}  \newcommand{\perkmspc}{\textrm{per~km~s}\ensuremath{^{-1}}\textrm{pc}\ensuremath{^{-1}}\xspace} % km s-1 pc-1  \newcommand{\perkms}{\textrm{per~km~s}\ensuremath{^{-1}}\xspace} % km s-1   \newcommand{\um}{\ensuremath{\mu m}\xspace} \textrm{m}}\xspace}  % micron \newcommand{\mum}{$\mu$m} \newcommand{\mum}{\um}  \newcommand{\htwo}{\ensuremath{\textrm{H}_2}} % micron  \newcommand{\Htwo}{\ensuremath{\textrm{H}_2}} % micron  \newcommand{\HtwoO}{\ensuremath{\textrm{H}_2\textrm{O}}} % micron        Binary files a/thesis.pdf and /dev/null differ