mark smits edited untitled.html  over 8 years ago

Commit id: 427f97cb1180a2268df70b626bc980b419e02ef7

deletions | additions      

       

Rocks are the primary source of all plant nutrients, except nitrogen. These nutrients are bound into a variety of crystalline structures (minerals). Minerals are either formed during rock formation from magma (primary mineral) or formed during soil formation (secondary minerals). Secondary minerals are formed when the local soil solution is saturated in respect to that mineral. In contrast to secondary minerals, for primary minerals the soil solution is generally undersaturated, causing these minerals to dissolve. But this dissolution process is extremely slow for most minerals. It has been estimated that it takes more than 30 million years to dissolve a 1 mm diameter quartz grain under natural soil conditions conditions  class="ltx_cite" data-bib-text="@article{Lasaga_1984, doi = {10.1029/jb089ib06p04009},  url = {http://dx.doi.org/10.1029/jb089ib06p04009},  year = 1984, 

author = {Antonio C. Lasaga},  title = {Chemical kinetics of water-rock interactions},  journal = {J. Geophys. Res.}  }" data-bib-key="Lasaga_1984" contenteditable="false">Lasaga 1984. Nonetheless, soil mineral weathering provides an essential input of plant nutrients into ecosystems, avoiding or delaying nutrient limitations limitations  class="ltx_cite" data-bib-text="@article{Chadwick_1999, doi = {10.1038/17276},  url = {http://dx.doi.org/10.1038/17276},  year = 1999, 

pages = {491--497},  author = {O. A. Chadwick and L. A. Derry and P. M. Vitousek and B. J. Huebert and L. O. Hedin},  journal = {Nature}  }" data-bib-key="Chadwick_1999" contenteditable="false">Chadwick 1999.

In addition, mineral weathering produces cations that counteract soil acidification, thereby improving the availability of most plant nutrients nutrients  class="ltx_cite" data-bib-text="@article{van_Breemen_1983, doi = {10.1007/bf02369968},  url = {http://dx.doi.org/10.1007/bf02369968},  year = 1983, 

author = {N. van Breemen and J. Mulder and C. T. Driscoll},  title = {Acidification and alkalinization of soils},  journal = {Plant Soil}  }" data-bib-key="van_Breemen_1983" contenteditable="false">Breemen 1983. Also clays are formed as a weathering product of feldspars and micas micas  class="ltx_cite" data-bib-text="@article{Oades_1988, doi = {10.1007/bf02180317},  url = {http://dx.doi.org/10.1007/bf02180317},  year = 1988, 

author = {J. M. Oades},  title = {The retention of organic matter in soils},  journal = {Biogeochemistry}  }" data-bib-key="Oades_1988" contenteditable="false">Oades 1988. Clay particles contribute, with their negative charged surfaces, to the cation exchange capacity (CEC) of the soil, reducing the leaching of positively charged nutrients like K+ and NH4+. Clay content correlates positively with water holding capacity and soil organic matter (SOM) content content  class="ltx_cite" data-bib-text="@article{Sollins_1996, doi = {10.1016/s0016-7061(96)00036-5},  url = {http://dx.doi.org/10.1016/s0016-7061(96)00036-5},  year = 1996, 

author = {Phillip Sollins and Peter Homann and Bruce A. Caldwell},  title = {Stabilization and destabilization of soil organic matter: mechanisms and controls},  journal = {Geoderma}  }" data-bib-key="Sollins_1996" contenteditable="false">Sollins 1996.

Moreover, the weathering of Ca- and Mag-silicate minerals play a central role in the global carbon cycle. The Ca and Mg, released by the weathering process, will be locked up as carbonates in marine sediments sediments  class="ltx_cite" data-bib-text="@article{sundquist1985geological, title={Geological perspectives on carbon dioxide and the carbon cycle},  author={Sundquist, Eric T},  journal={The Carbon Cycle and Atmospheric CO: Natural Variations Archean to Present},  pages={55--59},  year={1985},  publisher={Wiley Online Library}  }" data-bib-key="sundquist1985geological" contenteditable="false">Sundquist 1985. On the long-term, atmospheric CO2 is regulated by the weathering rates of these minerals, which is influenced by climate and mountain uplift uplift  class="ltx_cite" data-bib-text="@article{Berner_2003, doi = {10.1038/nature02131},  url = {http://dx.doi.org/10.1038/nature02131},  year = 2003, 

author = {M. E. Raymo and W. F. Ruddiman},  title = {Tectonic forcing of late Cenozoic climate},  journal = {Nature}  }" data-bib-key="Raymo_1992" contenteditable="false">Raymo 1992.

The vast amounts of nutrients locked in soil minerals has triggered, nearly 100 years ago, the question if plants actively enter this potential nutrient source source  class="ltx_cite" data-bib-text="@article{HALEY_1923, doi = {10.1097/00010694-192303000-00002},  url = {http://dx.doi.org/10.1097/00010694-192303000-00002},  year = 1923, 

author = {ERNEST DE TURK},  title = {{POTASSIUM}-{BEARING} {MINERALS} {AS} A {SOURCE} {OF} {POTASSIUM} {FOR} {PLANT} {GROWTH}},  journal = {Soil Science}  }" data-bib-key="TURK_1919" contenteditable="false">TURK 1919. Five decennia later, studies appear on the role of microorganisms, including mycorrhizal fungi, in mineral weathering weathering  class="ltx_cite" data-bib-text="@article{WEBLEY_1963, doi = {10.1111/j.1365-2389.1963.tb00935.x},  url = {http://dx.doi.org/10.1111/j.1365-2389.1963.tb00935.x},  year = 1963, 

author = {J. R. Boyle and G. K. Voigt},  title = {Biological weathering of silicate minerals},  journal = {Plant Soil}  }" data-bib-key="Boyle_1973" contenteditable="false">Boyle 1973. More recently, a publication with the provocative title Rock eating fungi appeared in Nature Nature  class="ltx_cite" data-bib-text="@article{Jongmans_1997, doi = {10.1038/39493},  url = {http://dx.doi.org/10.1038/39493},  year = 1997, 

pages = {682--683},  author = {A. G. Jongmans and N. van Breemen and U. Lundström and P. A. W. van Hees and R. D. Finlay and M. Srinivasan and T. Unestam and R. Giesler and P.-A. Melkerud and M. Olsson},  journal = {Nature}  }" data-bib-key="Jongmans_1997" contenteditable="false">Jongmans 1997. This publication presented evidence of, presumably mycorrhizal, fungal hyphae drilling their way (chemically and/or physically) into feldspar grains. This paper initiated renewed interest into the topic. A series of reviews has been published since then, covering the research up to 2009 2009  class="ltx_cite" data-bib-text="@article{Finlay_2009, doi = {10.1016/j.fbr.2010.03.002},  url = {http://dx.doi.org/10.1016/j.fbr.2010.03.002},  year = 2009, 

author = {Renske Landeweert and Ellis Hoffland and Roger D. Finlay and Thom W. Kuyper and Nico van Breemen},  title = {Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals},  journal = {Trends in Ecology {\&} Evolution}  }" data-bib-key="Landeweert_2001" contenteditable="false">Landeweert 2001.

 2001.

Since 2009, more evidence of mycorrhizal weathering has been published, based on in vitro and microcosm based research. A new aspect is the effect of the arise of different types of mycorrhizal fungi during the evolution of land plants on mineral weathering rates, and thus the global carbon cycle. The gap between laboratorium based studies and the real world has been bridged by a number of field based studied and mathematical modelling. So far, evidence of a substantial role of mycorrhizal fungi on soil mineral weathering has been missing, while modelling studies show contrasting results.

In this book chapter we briefly introduce the basics of physical and chemical weathering mechanisms, as insight in these mechanisms is of vital importance in the interpretation of results from laboratory based experiments and modellings studies. Next, we give an overview of the recent literature on this topic, and set their results in perspecitve with the current knowledge on mineral dissolution kinetics.