Giulia edited section_Introduction_State_of_the__.tex  over 8 years ago

Commit id: b0b381af712fc9b95bf8766aee826314266f7c3e

deletions | additions      

       

At reactor sources, these properties are at the basis of the Prompt Gamma Activation Analysis (PGAA) technique with thermal and cold neutrons, where high resolution gamma ray energy spectra are recorded [9, 11, 12] without any TOF information.  Some of these techniques use neutron resonances for element and isotope identification such as Neutron Resonance Capture Analysis (NRCA) [ref]. This technique use gamma-ray detector to measure the gamma ray emission that follows a resonant neutron capture event in the sample: (n, gamma). The Time Of Flight (TOF) of the recorded event provides information on the specific element in which the resonant radiative absorption takes place. Different elements, and their relative abundances, are therefore distinguished according to element-specific characteristic TOF patterns.   COSA FACCUMAO NOI IN PIĆ¹ E DI DIVERSO  A dual TOF-photon energy resolved analysis will go beyond the current state of the art of both PGAA and NRCA, with the potential to enhance the capabilities of both techniques, providing a simultaneous element/spatial sensitivity not currently available.  Gamma energy emission spectra for bi-parametric measurements can be recorded by a gamma detector (as germanium detector) equipped with a fast electronics. The bi-parametric acquisition procedure aims to the elemental identification and localization inside extended samples, without recurring to multiple rotations/exposures.