Jari Tapani Kolehmainen added file pressureloss.eps  over 8 years ago

Commit id: b14d2ed3a05a7b5184fb567893292442f5ae018e

deletions | additions      

         

%!PS-Adobe-3.0 EPSF-3.0  %%Creator: MATLAB, The MathWorks, Inc. Version 8.2.0.701 (R2013b). Operating System: Linux 2.6.32-573.7.1.el6.x86_64 #1 SMP Tue Sep 22 21:49:58 EDT 2015 x86_64.  %%Title: /home/shakti/jarik/monodisperse/pressureloss.eps  %%CreationDate: 10/14/2015 11:21:18  %%DocumentNeededFonts: Helvetica  %%DocumentProcessColors: Cyan Magenta Yellow Black  %%LanguageLevel: 2  %%Pages: 1  %%BoundingBox: -26 221 639 570  %%EndComments  %%BeginProlog  % MathWorks dictionary  /MathWorks 160 dict begin  % definition operators  /bdef {bind def} bind def  /ldef {load def} bind def  /xdef {exch def} bdef  /xstore {exch store} bdef  % operator abbreviations  /c /clip ldef  /cc /concat ldef  /cp /closepath ldef  /gr /grestore ldef  /gs /gsave ldef  /mt /moveto ldef  /np /newpath ldef  /cm /currentmatrix ldef  /sm /setmatrix ldef  /rm /rmoveto ldef  /rl /rlineto ldef  /s {show newpath} bdef  /sc {setcmykcolor} bdef  /sr /setrgbcolor ldef  /sg /setgray ldef  /w /setlinewidth ldef  /j /setlinejoin ldef  /cap /setlinecap ldef  /rc {rectclip} bdef  /rf {rectfill} bdef  % page state control  /pgsv () def  /bpage {/pgsv save def} bdef  /epage {pgsv restore} bdef  /bplot /gsave ldef  /eplot {stroke grestore} bdef  % orientation switch  /portraitMode 0 def /landscapeMode 1 def /rotateMode 2 def  % coordinate system mappings  /dpi2point 0 def  % font control  /FontSize 0 def  /FMS {/FontSize xstore findfont [FontSize 0 0 FontSize neg 0 0]  makefont setfont} bdef  /reencode {exch dup where {pop load} {pop StandardEncoding} ifelse  exch dup 3 1 roll findfont dup length dict begin  { 1 index /FID ne {def}{pop pop} ifelse } forall  /Encoding exch def currentdict end definefont pop} bdef  /isroman {findfont /CharStrings get /Agrave known} bdef  /FMSR {3 1 roll 1 index dup isroman {reencode} {pop pop} ifelse  exch FMS} bdef  /csm {1 dpi2point div -1 dpi2point div scale neg translate  dup landscapeMode eq {pop -90 rotate}  {rotateMode eq {90 rotate} if} ifelse} bdef  % line types: solid, dotted, dashed, dotdash  /SO { [] 0 setdash } bdef  /DO { [.5 dpi2point mul 4 dpi2point mul] 0 setdash } bdef  /DA { [6 dpi2point mul] 0 setdash } bdef  /DD { [.5 dpi2point mul 4 dpi2point mul 6 dpi2point mul 4  dpi2point mul] 0 setdash } bdef  % macros for lines and objects  /L {lineto stroke} bdef  /MP {3 1 roll moveto 1 sub {rlineto} repeat} bdef  /AP {{rlineto} repeat} bdef  /PDlw -1 def  /W {/PDlw currentlinewidth def setlinewidth} def  /PP {closepath eofill} bdef  /DP {closepath stroke} bdef  /MR {4 -2 roll moveto dup 0 exch rlineto exch 0 rlineto  neg 0 exch rlineto closepath} bdef  /FR {MR stroke} bdef  /PR {MR fill} bdef  /L1i {{currentfile picstr readhexstring pop} image} bdef  /tMatrix matrix def  /MakeOval {newpath tMatrix currentmatrix pop translate scale  0 0 1 0 360 arc tMatrix setmatrix} bdef  /FO {MakeOval stroke} bdef  /PO {MakeOval fill} bdef  /PD {currentlinewidth 2 div 0 360 arc fill  PDlw -1 eq not {PDlw w /PDlw -1 def} if} def  /FA {newpath tMatrix currentmatrix pop translate scale  0 0 1 5 -2 roll arc tMatrix setmatrix stroke} bdef  /PA {newpath tMatrix currentmatrix pop translate 0 0 moveto scale  0 0 1 5 -2 roll arc closepath tMatrix setmatrix fill} bdef  /FAn {newpath tMatrix currentmatrix pop translate scale  0 0 1 5 -2 roll arcn tMatrix setmatrix stroke} bdef  /PAn {newpath tMatrix currentmatrix pop translate 0 0 moveto scale  0 0 1 5 -2 roll arcn closepath tMatrix setmatrix fill} bdef  /vradius 0 def /hradius 0 def /lry 0 def  /lrx 0 def /uly 0 def /ulx 0 def /rad 0 def  /MRR {/vradius xdef /hradius xdef /lry xdef /lrx xdef /uly xdef  /ulx xdef newpath tMatrix currentmatrix pop ulx hradius add uly  vradius add translate hradius vradius scale 0 0 1 180 270 arc   tMatrix setmatrix lrx hradius sub uly vradius add translate  hradius vradius scale 0 0 1 270 360 arc tMatrix setmatrix  lrx hradius sub lry vradius sub translate hradius vradius scale  0 0 1 0 90 arc tMatrix setmatrix ulx hradius add lry vradius sub  translate hradius vradius scale 0 0 1 90 180 arc tMatrix setmatrix  closepath} bdef  /FRR {MRR stroke } bdef  /PRR {MRR fill } bdef  /MlrRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lry uly sub 2 div def  newpath tMatrix currentmatrix pop ulx rad add uly rad add translate  rad rad scale 0 0 1 90 270 arc tMatrix setmatrix lrx rad sub lry rad  sub translate rad rad scale 0 0 1 270 90 arc tMatrix setmatrix  closepath} bdef  /FlrRR {MlrRR stroke } bdef  /PlrRR {MlrRR fill } bdef  /MtbRR {/lry xdef /lrx xdef /uly xdef /ulx xdef /rad lrx ulx sub 2 div def  newpath tMatrix currentmatrix pop ulx rad add uly rad add translate  rad rad scale 0 0 1 180 360 arc tMatrix setmatrix lrx rad sub lry rad  sub translate rad rad scale 0 0 1 0 180 arc tMatrix setmatrix  closepath} bdef  /FtbRR {MtbRR stroke } bdef  /PtbRR {MtbRR fill } bdef  /stri 6 array def /dtri 6 array def  /smat 6 array def /dmat 6 array def  /tmat1 6 array def /tmat2 6 array def /dif 3 array def  /asub {/ind2 exch def /ind1 exch def dup dup  ind1 get exch ind2 get sub exch } bdef  /tri_to_matrix {  2 0 asub 3 1 asub 4 0 asub 5 1 asub  dup 0 get exch 1 get 7 -1 roll astore } bdef  /compute_transform {  dmat dtri tri_to_matrix tmat1 invertmatrix   smat stri tri_to_matrix tmat2 concatmatrix } bdef  /ds {stri astore pop} bdef  /dt {dtri astore pop} bdef  /db {2 copy /cols xdef /rows xdef mul dup 3 mul string  currentfile   3 index 0 eq {/ASCIIHexDecode filter}  {/ASCII85Decode filter 3 index 2 eq {/RunLengthDecode filter} if }  ifelse exch readstring pop  dup 0 3 index getinterval /rbmap xdef  dup 2 index dup getinterval /gbmap xdef  1 index dup 2 mul exch getinterval /bbmap xdef pop pop}bdef  /it {gs np dtri aload pop moveto lineto lineto cp c  cols rows 8 compute_transform   rbmap gbmap bbmap true 3 colorimage gr}bdef  /il {newpath moveto lineto stroke}bdef  currentdict end def  %%EndProlog  %%BeginSetup  MathWorks begin  0 cap  end  %%EndSetup  %%Page: 1 1  %%BeginPageSetup  %%PageBoundingBox: -26 221 639 570  MathWorks begin  bpage  %%EndPageSetup  %%BeginObject: obj1  bplot  /dpi2point 12 def  portraitMode -0312 6840 csm  0 0 7986 4185 rc  85 dict begin %Colortable dictionary  /c0 { 0.000000 0.000000 0.000000 sr} bdef  /c1 { 1.000000 1.000000 1.000000 sr} bdef  /c2 { 0.900000 0.000000 0.000000 sr} bdef  /c3 { 0.000000 0.820000 0.000000 sr} bdef  /c4 { 0.000000 0.000000 0.800000 sr} bdef  /c5 { 0.910000 0.820000 0.320000 sr} bdef  /c6 { 1.000000 0.260000 0.820000 sr} bdef  /c7 { 0.000000 0.820000 0.820000 sr} bdef  c0  1 j  1 sg  0 0 7987 4186 rf  24 w  0 3362 2673 0 0 -3362 1038 3725 4 MP  PP  -2673 0 0 3362 2673 0 0 -3362 1038 3725 5 MP stroke  16 w  DO  SO  24 w  0 sg  1038 3725 mt 3711 3725 L  1038 363 mt 3711 363 L  1038 3725 mt 1038 363 L  3711 3725 mt 3711 363 L  1038 3725 mt 3711 3725 L  1038 3725 mt 1038 363 L  1038 3725 mt 1038 3691 L  1038 364 mt 1038 397 L  %%IncludeResource: font Helvetica  /Helvetica /ISOLatin1Encoding 168 FMSR  992 3915 mt   (0) s  2374 3725 mt 2374 3691 L  2374 364 mt 2374 397 L  2211 3915 mt   (0.05) s  3711 3725 mt 3711 3691 L  3711 364 mt 3711 397 L  3595 3915 mt   (0.1) s  1038 3725 mt 1071 3725 L  3711 3725 mt 3677 3725 L  723 3787 mt   (100) s  1038 3351 mt 1071 3351 L  3711 3351 mt 3677 3351 L  723 3413 mt   (110) s  1038 2978 mt 1071 2978 L  3711 2978 mt 3677 2978 L  723 3040 mt   (120) s  1038 2604 mt 1071 2604 L  3711 2604 mt 3677 2604 L  723 2666 mt   (130) s  1038 2231 mt 1071 2231 L  3711 2231 mt 3677 2231 L  723 2293 mt   (140) s  1038 1857 mt 1071 1857 L  3711 1857 mt 3677 1857 L  723 1919 mt   (150) s  1038 1484 mt 1071 1484 L  3711 1484 mt 3677 1484 L  723 1546 mt   (160) s  1038 1110 mt 1071 1110 L  3711 1110 mt 3677 1110 L  723 1172 mt   (170) s  1038 737 mt 1071 737 L  3711 737 mt 3677 737 L  723 799 mt   (180) s  1038 364 mt 1071 364 L  3711 364 mt 3677 364 L  723 426 mt   (190) s  1038 3725 mt 3711 3725 L  1038 363 mt 3711 363 L  1038 3725 mt 1038 363 L  3711 3725 mt 3711 363 L  gs 1038 364 2674 3362 rc  /c8 { 0.000000 0.000000 1.000000 sr} bdef  c8  26 1 26 1 25 1 26 1 26 1 25 2 26 2 26 2   25 2 26 1 26 2 25 1 26 2 26 2 25 2 26 2   26 2 25 2 26 1 26 2 25 2 26 2 26 2 25 2   26 2 26 2 25 1 26 1 26 1 25 2 26 1 26 2   25 1 26 2 26 1 25 2 26 1 26 2 25 1 26 1   26 2 25 1 26 1 25 2 26 3 26 4 25 3 26 2   26 1 25 2 26 2 26 3 25 5 26 5 26 6 25 8   26 10 26 10 25 11 26 12 26 11 25 13 26 18 26 26   25 27 26 28 26 39 25 47 26 50 26 48 25 51 26 61   26 68 25 70 26 64 26 68 25 78 26 89 26 102 25 106   26 110 26 109 25 99 26 92 26 87 25 83 26 83 26 95   25 97 26 94 26 93 25 100 26 96 26 86 25 90 26 85   26 90 25 101 26 132 25 106 1038 539 101 MP stroke  /c9 { 0.000000 0.500000 0.000000 sr} bdef  c9  26 0 26 0 25 0 26 -1 26 0 25 0 26 -1 26 -1   25 -1 26 0 26 -1 25 -1 26 -1 26 0 25 0 26 -1   26 0 25 -1 26 0 26 0 25 0 26 -1 26 0 25 -1   26 0 26 0 25 -1 26 0 26 0 25 -1 26 0 26 -1   25 -1 26 0 26 -1 25 0 26 -1 26 0 25 -1 26 0   26 0 25 0 26 0 25 1 26 0 26 1 25 2 26 3   26 1 25 1 26 3 26 4 25 2 26 5 26 5 25 8   26 9 26 9 25 10 26 15 26 16 25 16 26 17 26 22   25 21 26 20 26 26 25 34 26 39 26 46 25 59 26 63   26 73 25 76 26 78 26 81 25 71 26 66 26 72 25 73   26 75 26 74 25 74 26 84 26 82 25 86 26 89 26 90   25 90 26 83 26 90 25 105 26 96 26 81 25 102 26 107   26 114 25 114 26 126 25 105 1038 790 101 MP stroke  /c10 { 1.000000 0.000000 0.000000 sr} bdef  c10  26 0 26 1 25 0 26 0 26 1 25 0 26 1 26 1   25 0 26 1 26 0 25 1 26 0 26 0 25 1 26 0   26 0 25 0 26 1 26 0 25 0 26 1 26 0 25 1   26 0 26 1 25 0 26 1 26 1 25 0 26 1 26 1   25 1 26 1 26 0 25 2 26 1 26 1 25 1 26 2   26 1 25 1 26 1 25 2 26 1 26 1 25 1 26 1   26 2 25 1 26 1 26 1 25 2 26 1 26 1 25 2   26 1 26 1 25 1 26 2 26 4 25 5 26 7 26 10   25 15 26 22 26 29 25 29 26 34 26 38 25 45 26 55   26 59 25 55 26 54 26 55 25 58 26 65 26 63 25 61   26 62 26 68 25 77 26 74 26 73 25 75 26 67 26 55   25 60 26 59 26 59 25 62 26 66 26 64 25 62 26 66   26 70 25 75 26 81 25 87 1038 1513 101 MP stroke  /c11 { 0.000000 0.750000 0.750000 sr} bdef  c11  26 -1 26 0 25 -1 26 0 26 -1 25 -1 26 -1 26 -1   25 -1 26 0 26 0 25 0 26 0 26 0 25 1 26 1   26 1 25 0 26 1 26 1 25 0 26 1 26 0 25 1   26 0 26 0 25 0 26 0 26 0 25 1 26 0 26 1   25 0 26 0 26 0 25 0 26 0 26 1 25 0 26 0   26 0 25 0 26 0 25 -1 26 0 26 -1 25 0 26 -1   26 -1 25 0 26 -1 26 -1 25 0 26 -1 26 0 25 0   26 0 26 0 25 2 26 3 26 3 25 5 26 6 26 8   25 8 26 11 26 13 25 16 26 20 26 24 25 34 26 45   26 55 25 63 26 64 26 66 25 62 26 60 26 62 25 64   26 69 26 70 25 67 26 73 26 79 25 90 26 87 26 80   25 73 26 66 26 64 25 70 26 71 26 78 25 75 26 72   26 73 25 78 26 90 25 82 1038 1490 101 MP stroke  gr  c11  0 sg  2088 156 mt   (u=0.3V) s  %%IncludeResource: font Helvetica  /Helvetica /ISOLatin1Encoding 132 FMSR  2625 240 mt   (t) s  %%IncludeResource: font Helvetica  /Helvetica /ISOLatin1Encoding 168 FMSR  2214 4093 mt   (z[m]) s  631 2551 mt -90 rotate  (Pressure [Pa]) s  90 rotate  1015 3786 mt   ( ) s  3689 424 mt   ( ) s  3058 603 mt   (e/g=0) s  gs 2581 425 1072 847 rc  c8  367 0 2654 543 2 MP stroke  gr  c8  0 sg  3058 807 mt   (e/g=0.1) s  gs 2581 425 1072 847 rc  c9  367 0 2654 746 2 MP stroke  gr  c9  0 sg  3058 1010 mt   (e/g=1.0) s  gs 2581 425 1072 847 rc  c10  367 0 2654 949 2 MP stroke  gr  c10  0 sg  3058 1214 mt   (e/g=3.0) s  gs 2581 425 1072 847 rc  c11  367 0 2654 1152 2 MP stroke  gr  c11  1 sg  0 3362 2672 0 0 -3362 4555 3725 4 MP  PP  -2672 0 0 3362 2672 0 0 -3362 4555 3725 5 MP stroke  16 w  DO  SO  24 w  0 sg  4555 3725 mt 7227 3725 L  4555 363 mt 7227 363 L  4555 3725 mt 4555 363 L  7227 3725 mt 7227 363 L  4555 3725 mt 7227 3725 L  4555 3725 mt 4555 363 L  4555 3725 mt 4555 3691 L  4555 364 mt 4555 397 L  4509 3915 mt   (0) s  5891 3725 mt 5891 3691 L  5891 364 mt 5891 397 L  5728 3915 mt   (0.05) s  7227 3725 mt 7227 3691 L  7227 364 mt 7227 397 L  7111 3915 mt   (0.1) s  4555 3725 mt 4588 3725 L  7227 3725 mt 7193 3725 L  4240 3787 mt   (100) s  4555 3351 mt 4588 3351 L  7227 3351 mt 7193 3351 L  4240 3413 mt   (110) s  4555 2978 mt 4588 2978 L  7227 2978 mt 7193 2978 L  4240 3040 mt   (120) s  4555 2604 mt 4588 2604 L  7227 2604 mt 7193 2604 L  4240 2666 mt   (130) s  4555 2231 mt 4588 2231 L  7227 2231 mt 7193 2231 L  4240 2293 mt   (140) s  4555 1857 mt 4588 1857 L  7227 1857 mt 7193 1857 L  4240 1919 mt   (150) s  4555 1484 mt 4588 1484 L  7227 1484 mt 7193 1484 L  4240 1546 mt   (160) s  4555 1110 mt 4588 1110 L  7227 1110 mt 7193 1110 L  4240 1172 mt   (170) s  4555 737 mt 4588 737 L  7227 737 mt 7193 737 L  4240 799 mt   (180) s  4555 364 mt 4588 364 L  7227 364 mt 7193 364 L  4240 426 mt   (190) s  4555 3725 mt 7227 3725 L  4555 363 mt 7227 363 L  4555 3725 mt 4555 363 L  7227 3725 mt 7227 363 L  gs 4555 364 2673 3362 rc  c8  26 0 26 -1 25 0 26 -1 26 -1 25 -1 26 -1 26 -2   25 -1 26 -2 26 -2 25 -2 26 -1 25 -2 26 -1 26 -1   25 -1 26 0 26 -1 25 0 26 0 26 0 25 -1 26 0   26 0 25 -1 26 0 26 0 25 0 26 -1 26 0 25 -1   26 0 26 -1 25 0 26 0 25 -1 26 0 26 -1 25 -1   26 0 26 0 25 -1 26 1 26 0 25 0 26 0 26 0   25 0 26 0 26 0 25 0 26 0 26 0 25 0 26 0   25 1 26 1 26 4 25 2 26 9 26 17 25 5 26 6   26 12 25 13 26 16 26 22 25 40 26 58 26 63 25 64   26 72 26 75 25 78 26 74 26 73 25 76 26 65 25 68   26 73 26 90 25 102 26 129 26 135 25 136 26 139 26 128   25 126 26 109 26 84 25 60 26 61 26 57 25 56 26 77   26 125 25 140 26 132 25 97 4555 746 101 MP stroke  c9  26 0 26 0 25 1 26 0 26 0 25 0 26 0 26 0   25 0 26 0 26 0 25 0 26 0 25 1 26 0 26 0   25 0 26 1 26 0 25 0 26 0 26 0 25 0 26 1   26 0 25 0 26 1 26 0 25 0 26 1 26 0 25 0   26 0 26 0 25 -1 26 0 25 0 26 0 26 0 25 0   26 0 26 0 25 0 26 -1 26 0 25 0 26 0 26 0   25 0 26 0 26 0 25 1 26 0 26 -1 25 0 26 0   25 0 26 1 26 3 25 4 26 6 26 6 25 8 26 9   26 18 25 27 26 31 26 36 25 43 26 49 26 57 25 63   26 62 26 64 25 66 26 66 26 74 25 87 26 99 25 107   26 107 26 103 25 98 26 105 26 106 25 107 26 105 26 93   25 86 26 76 26 75 25 81 26 100 26 99 25 89 26 83   26 102 25 125 26 128 25 106 4555 723 101 MP stroke  c10  26 1 26 0 25 1 26 0 26 2 25 1 26 1 26 1   25 2 26 1 26 2 25 1 26 2 25 1 26 1 26 2   25 1 26 2 26 1 25 1 26 1 26 1 25 2 26 1   26 1 25 2 26 1 26 1 25 2 26 1 26 1 25 1   26 1 26 1 25 1 26 2 25 1 26 1 26 1 25 0   26 1 26 1 25 0 26 1 26 1 25 0 26 1 26 1   25 0 26 1 26 1 25 1 26 1 26 1 25 0 26 2   25 1 26 0 26 2 25 1 26 0 26 2 25 0 26 1   26 2 25 1 26 1 26 2 25 1 26 1 26 1 25 1   26 1 26 1 25 2 26 1 26 1 25 2 26 4 25 7   26 12 26 20 25 29 26 43 26 44 25 72 26 113 26 100   25 93 26 115 26 98 25 100 26 99 26 93 25 101 26 114   26 113 25 107 26 116 25 101 4555 1908 101 MP stroke  c11  26 0 26 0 25 1 26 0 26 1 25 0 26 1 26 1   25 1 26 0 26 1 25 1 26 0 25 1 26 0 26 1   25 0 26 1 26 0 25 1 26 1 26 1 25 1 26 0   26 1 25 1 26 0 26 1 25 2 26 1 26 1 25 2   26 1 26 1 25 1 26 1 25 2 26 1 26 2 25 1   26 1 26 1 25 1 26 1 26 1 25 1 26 1 26 1   25 2 26 1 26 1 25 2 26 1 26 1 25 2 26 2   25 1 26 1 26 2 25 2 26 1 26 2 25 1 26 1   26 1 25 2 26 1 26 2 25 3 26 6 26 7 25 9   26 11 26 13 25 16 26 22 26 28 25 40 26 57 25 74   26 90 26 90 25 96 26 97 26 95 25 91 26 85 26 84   25 91 26 81 26 77 25 84 26 93 26 93 25 95 26 100   26 100 25 114 26 130 25 108 4555 1437 101 MP stroke  gr  c11  0 sg  5604 156 mt   (u=0.2V) s  %%IncludeResource: font Helvetica  /Helvetica /ISOLatin1Encoding 132 FMSR  6141 240 mt   (t) s  %%IncludeResource: font Helvetica  /Helvetica /ISOLatin1Encoding 168 FMSR  5731 4093 mt   (z[m]) s  end %%Color Dict  eplot  %%EndObject  epage  end  showpage  %%Trailer  %%EOF           

\section{Results}  \subsection{Overview}  We simulated a slugging fluidized bed with various work function values and two different superficial velocities, namely $0.2V_t$ and $0.3V_t$ where $V_t$ is the terminal velocity of $150 \micro \meter$ polyethylene particle with density of $910 \mathrm{g} / \mathrm{cm}^3$. The geometry was a long pipe with funnel attached at the top of pipe. The pipe was $640$ particle diameters tall and $20$ particle diameters wide. Particles had initially a zero charge and $36410$ particles were evenly distributed through out the fluidized bed.   We imposed an uniform superficial velocity boundary condition at the grate, and a constant pressure boundary condition at the outlet. The mesh was a hexahedra butterfly mesh with each cell having roughly three particle diameter witdth. This setup is was chosen to obtain grid independent CFDEM simulation.  The maximum particle charge was estimated from the charge transfer equation by setting the local electricfield term equal to the work function difference at the wall. This gave maximum charge $q_{eq}$  \begin{equation}  q_{eq} = \frac{2 \pi \varepsilon_0 }{\delta_c e}\Delta \phi r_i^2,  \label{eq:r1}  \end{equation} where $\delta_c$ is the electron cut-off distance, $\Delta \phi$ the work function difference between the particle and the wall which was varied between different simulation cases, and $r_i$ particle radius.  In this study we studies monodisperse suspensions of particles that had $r_i=150 \micro \meter$ and density similar to polyethylene $910 \kilogram / \meter^3$.   We characterized the strength of the electrostatic effects by looking at the ratio of the electricfield at the contact of two particles with charge $q_{eq}$ and the gravitational force. More formally we have  \begin{equation}  e/g = \frac{q_{eq} E}{mg},  \label{eq:r2}  \end{equation} that becomes effectively a function of work function via Eq. \eqref{eq:r1}. The cut-off radius of the electrostatic effects was chosen such that the electricfield coming from a particle with charge $q_{eq}$ would be neglected when the force between two particles with charge $q_{eq}$ was less than 10 percent from the gravitational force. The particles typically had charge less than $q_{eq}$, hence the 10 percent characterizes the largest possible cut-off error. The cut-off radius varied between $0.5$ to $7$ particle diameters in our simulations depending on the imposed work function difference. Six different work function cases were investigated, namely $e/g=0$, $e/g=0.1$, $e/g=0.5$, $e/g=1.0$, $e/g=1.5$, and $e/g=3.0$.   The tribocharging is generally a slow phenomenon, and takes minutes to hours to reach a steady state. To overcome this issue we accelerated the charge transfer by employing a coefficient similar to Eq. \eqref{eq:e11} that multiplied the charge transfer by $50$.   \begin{figure}  \centering  \includegraphics[width=0.95\textwidth]{snapshot.eps}  \caption{Snapshot taken at $1.8 \, \mathrm{s}$ of eight different fluidization cases. Cases (A)-(D) have superficial velocity of $0.2V_t$ while cases (E)-(H) have superficial velocity of $0.3V_t$. The background is colored by the solids volume fraction, and particles are colored based on the vertical velocity. Every $20$:th particle is shown in the figure from total of $36410$ particles.}  \label{fig:c0}  \end{figure}  Fig. \ref{fig:c0} shows snapshots taken from the simulations. From the figure one can observe that the amount of particles sticking to the wall (green particles that have zero velocity) increases with increasing charge. Also the bed homogenuity increases with increasing charge, and there are no visible slugs in the highly charged cases. Interestingly, the   \subsection{Tribocharging Rate}  We computed the average charge on a particle at given time instance. As predicted by the Eq. \eqref{eq:e9}, the charge increased by an exponential law, and approached the equilibrium charge. The charge evolution of the fluidized bed is shown in Fig. \ref{fig:c1}. The scaled total charge for all the three presented cases is very similar in the beginning of the simulations. However, once the particles charge the charging rate respect to equilibrium charge slows down. The charging rate decrease seems to be larger with larger charge.   One likely explanation for this is that the highly charged particles form a layer at the wall. This layer repels other charged particles ultimately decreasing the collision rate and collision velocity of these particles with the wall. Hence, in the highly charged cases this mechanism will cause increasing decrease in the charging rate as the particle charge increases.  \begin{figure}  \centering  \includegraphics[width=0.75\textwidth]{charge.eps}  \caption{Charging rate of the fluidized bed with various rations of electrostatic forces to gravity.}  \label{fig:c1}  \end{figure}  Fig. \ref{fig:cc1} shows charging of the system with two different work function differences, and two different superficial velocities. The higher superficial velocity case charges slightly faster, but the difference is small. Hence, the superficial velocity had no major effects on the particle charging rate.  \begin{figure}  \centering  \includegraphics[width=\textwidth]{charge2.eps}  \caption{Charging rate of the fluidized bed with various two ratios of electrostatic forces to gravity, and varying superficial velocity.}  \label{fig:cc1}  \end{figure}  Fig. \ref{fig:cc2} shows the probability density functions of charge of the system with three different work function differences. As the work function values increase the distribution shifts to larger levels of charge. Interestingly, the density function also becomes wider, ans shows two separate peaks for the $e/g=3$ case. To inspect this behavior further we computed charge distributions from particles that are in one diameter radius from wall, and the particles that are in the inner region. These results are shown in the Fig. \ref{fig:cc3}. As can be seen from the figure, the particles at the wall have different density function than the particles at the inner region. The difference between the density functions increases with increasing charge leading to two separate peaks in the case $e/g=3$.  \begin{figure}  \centering  \includegraphics[width=\textwidth]{chargehist.eps}  \caption{Probability distribution of charge.}  \label{fig:cc2}  \end{figure}    \begin{figure}  \centering  \includegraphics[width=\textwidth]{chargehist2.eps}  \caption{Probability distribution of charge respect to walls and interior.}  \label{fig:cc3}  \end{figure}  \subsection{Particle Volume and Charge Distribution}  The effect of charging to particle radial distribution and to radial charge distribution was investigated. These distributions were computed from time averages taken after the bed was reached to at least $70\%$ percent from the equilibrium charge. The particle radial distribution is shown in Fig. \ref{fig:c2}. The charged particles tend to move at the wall due to attractive electrostatic force between the wall and the particles. Interestingly there is a low solid volume fraction area next to the wall. Possible cause for this could be the repeling force between the particles at the wall and particles approaching the wall which would also explain the decreases in the charging rate in Fig. \ref{fig:c1}. Fig. \ref{fig:w2} shows fraction of the particles that is at the wall. We can see that the fraction increases to certain limit until the $e/g=1$ case, and stays after that effectively constant. Furthermore, the higher superficial velocity has larger fraction of particles at the wall probably due to particles being able to also stick at the higher parts of the fluidized bed.  \begin{figure}  \centering  \includegraphics[width=0.75\textwidth]{vofdist.eps}  \caption{Radial particle distribution.}  \label{fig:c2}  \end{figure}  \begin{figure}  \centering  \includegraphics[width=0.75\textwidth]{wall.eps}  \caption{Particle fraction at the wall.}  \label{fig:w2}  \end{figure}  Fig. \ref{fig:c3} shows the radial charge distribution for particle. The particles at the wall had the heighest charge, but interestingly the the particle charge decreased sharply after the wall, and started again slowly increasing. The possible cause for this behavior is that highly charged particles at the wall repel other particles with high charge. Hence it is more likely to find a particles with lower charge next to the wall layer than another particle with high charge. Authors believe that the gap between the interior and the wall might be effected by the high acceleration factor, since with low acceleration factor the particles would have more time to collide with the wall before they form the protective layer at the wall.    \begin{figure}  \centering  \includegraphics[width=0.75\textwidth]{chargedist.eps}  \caption{Radial average particle charge distribution.}  \label{fig:c3}  \end{figure}  \subsection{Particle Velocity Distribution}  %We also computed the average coordination number of particles. The results are shown in Fig. \ref{fig:c4}. The coordination was a decreasing curve for the non- or slightly charged cases, but had non monotonic behavior for the case $e/g=1.0$(??).   %\begin{figure}  %\centering  %\includegraphics[width=\textwidth]{coordination.eps}  %\caption{Coordination numbers of various cases. Blue line shows the early case after $0.3 \second$ where substantial charging has not happened, and the late case after $1.8 \second$. }  %\label{fig:c4}  %\end{figure}  %\begin{figure}  %\centering  %\includegraphics[width=\textwidth]{coordination2.eps}  %\caption{Coordination numbers of various cases divided to coordination number of particles at the wall and particles in the interior of the bed. }  %\label{fig:e4}  %\end{figure}  We computed the average particle velocity at different distances from particle center. The results are shown in Fig. \ref{fig:c5}. The lowly charged cases show particles moving up in the center of the bed, and falling down at the wall that is consistent with the uncharged case. However, when the charge on the particles increases the center of bed has a falling slug, and the intermediate particles next to the wall move up. This behavior could be caused by the reduced volume fraction next to the wall. Once the charge is increased even more, the bed returns to similar velocity distribution that the lowly charged cases have. It is also visible from the Fig. \ref{fig:c5} that the particles form a static layer at the wall around $e/g=1$ as the wall particle velocity goes effectively to zero.  \begin{figure}  \centering  \includegraphics[width=\textwidth]{veldist.eps}  \caption{Time averaged vertical velocity distribution at different distances from the center of the bed. Various work function values and superficial velocities are shown. }  \label{fig:c5}  \end{figure}  \subsection{Effects on Bed Height and to Pressure Loss}  Fig. \ref{fig:c7} shows bed heights at different times that contain $95\%$ of the particles. The particles fall quicly to the hydrodynamical pseudo steady state. In the higher superficial gas velocity case, the bed height seems to be effected only slightly due to particle charging. However, the bed height oscillations are reduced clearly with the increasing charge. This is consistent with the prementioned observation of particles sticking at the wall and with the observation of Hassani \cite{hassani_numerical_2013} that monodispersed charged particles tend to produce more homogenous fluidization than uncharged particles.  For the lower superficial gas velocity case we also observe the decrease in the bed height oscillations, but also the bed height is decreased with at first by increased particle charge, and then expanded again by increasing charge. This behavior can be explained by two mechanism: particle repelling force and particles sticking to the wall. When particles stick to the wall, the volume fraction in the center of the bed is decreased, and in-turn the particle drag is reduced. The reduced drag causes bed to collapse. When the particle charge is increased even further the repelling force of particles cause particles to stay farther away from each other. This will effectively cause the bed to expans and explains the increase seen form $e/g=1$ to $e/g=3$. The first case where particle sticking is observed is the case with $e/g=1$, and we would expect a sudden drop at this point in the bed height that is visible in the lower superficial velocity case, but not with the higher superficial gas velocity.  \begin{figure}  \centering  \includegraphics[width=\textwidth]{bed_height_oscil.eps}  \caption{Figure showing instantenous bed heights that contain $95\%$ of the particles. }  \label{fig:c7}  \end{figure}  The time averaged gas pressure curve at the center of the bed is shown in Fig. \ref{fig:c6}. The pressure loss over the bed decreases with with increasing particle charge.  \begin{figure}  \centering  \includegraphics[width=\textwidth]{pressureloss.eps}  \caption{Time averaged pressure curves from bed bottom to the outlet with varying electrostatic force. }  \label{fig:c6}  \end{figure}  %\begin{figure}  %\centering  %\includegraphics[width=\textwidth]{pressure_intro.eps}  %\caption{Illustration of bed height determination from pressure curve. }  %\label{fig:c7}  %\end{figure}