Ning Zhu added section_Analysis_1_Direct_Fit__.tex  over 8 years ago

Commit id: 447cb3cba69a2ef560b5fc5efc10071dd88298cb

deletions | additions      

         

\section{Analysis}  1. Direct Fit  $$V_{c}=\frac{1}{L}\times \frac{\Delta\theta}{\Delta B}$$  %$$\frac{\Delta\theta}{\Delta B}=\frac{\Delta V}{\Delta B} \times \frac{\Delta \theta}{\Delta V}$$  $$\theta_{B}=104 degrees; \theta_{0}=108 degrees$$  $$\Delta\theta=\theta_{B}-\theta_{0}=-0.069 radians$$  $$\Delta B=-3A\times 11.1\frac{mT}{A}=-33.3mT$$  $$\frac{\Delta\theta}{\Delta B}=\frac{-0.069radians}{-33.3mT}=0.00207\frac{radians}{mT}=2.07\frac{radians}{T}$$  $$V_{c}=\frac{1}{L}\times \frac{\Delta\theta}{\Delta B}=\frac{1}{0.1m}\times 2.07\frac{radians}{T}=20.7\frac{radians}{T*m}$$  2. Slope Fit\newline  As shown in Figure 2:  $$V=0.000443B+0.127$$  Therefore:  $$\frac{\Delta V}{\Delta B}=0.000443\frac{V}{mT}=0.443\frac{V}{T}$$  As shown in Figure 1:   $$V=\frac{0.021\times (1+cos(\frac{2\pi\times(\theta-162)}{180}))}{2}$$  Taking the derivative at $\theta=117$ degrees:  $$\frac{\Delta V}{\Delta \theta}=\frac{0.21}{2}\times(-sin(2\frac{\pi}{180}(-45)))=0.21V$$  $$\frac{\Delta\theta}{\Delta B}=\frac{\Delta V}{\Delta B} \times \frac{\Delta \theta}{\Delta V}=0.443\frac{V}{T}\times\frac{1 radian}{0.21V}=2.1095\frac{radians}{T}$$  $$V_{c}=\frac{1}{L}\times \frac{\Delta\theta}{\Delta B}=\frac{1}{0.1}\times2.1095\frac{radians}{T}=21.095\frac{radians}{T*m}$$  3. Lock-in Method  $$I_{rms}=0.6137\times V_{rms}$$  $$B=11.1\times\frac{mT}{A}\times I$$  $$Gain=G_{preamplifier}\times G_{filter}\times G_{lock-in-amplifier}\times G_{lowpass filter}=500\times2\times10\times1=10000$$  $$V_{Photodiode}=\frac{V_{output}\times1.11}{10000}$$  The main method is to change the magnetic field and then to observe the corresponding voltage output from photodiode.30mV, 40mV, 50mV and 60mV have been used to supply the magnetic field, and these are all rms values. Calculation method is shown above, and detailed numeric calculation is shown in the appendix.