Madeline Horn edited Table_ref_table_Johnson1_shows__.tex  over 8 years ago

Commit id: 6097f0fb8fb7093b8ee7781bed683ad9ff5ecde3

deletions | additions      

       

Table.~\ref{table:Johnson1} shows the values for the Johnson Noise $^2 + ^2$ in units of Volts$^2$from a resistance value of $10K$ ohms, $10 K \Omega$,  a temperature of $295.15$ Kelvin, a G1 of $600$, $X600$,  a G2 of $1000$, $X1000$,  and we varied the f1 and f1 in order to change the bandwidth. The values in \ref{table:Johnson1} are explained by the following equation: 

where the factor of $10 \textrm{Volts}$ comes from the amplifier and the $^2 + ^2$ is the measured voltage from the multi-mete before the error has been subtracted.  --- \textbf{are these really Johnson noise voltages? I suspect from the rest of your paper that these might actually values for $^2 + ^2$ in units of Volts$^2$. Obviously, this is an important distinction, and not just a matter of being picky, b/c these are very different things physically and numerically would lead to very different results for your calculations!} ---- from a resistance value of $10K$ ohms, $10 K \Omega$,  a temperature of $295.15$ Kelvin, a G1 of $600$, $X600$,  a G2 of $1000$, $X1000$,  and we varied the f1 and f1 in order to change the bandwidth. AND SIMILARLY for the values of temperature, $G_1$, $G_2$, and $f_1$ and $f_2$.