William P. Gammel edited We_expect_the_transmission_data__.tex  over 8 years ago

Commit id: 489ea381d35d8cc9310fe21f519ad7c930501473

deletions | additions      

       

We expect the transmission data to theoretically be a sum of multiple Lorentzian functions. With the transitions we measure, we expect to see three hyperfine peaks. However, due to crossovers, we actually see six. Thus we can find the transition frequencies associated with the hyperfine structure of $^{85}Rb$ and $^{87}Rb$ by fitting the raw transmission data to a function comprised of six Lorentzians and an offset. The equation is given by,   \begin{equation}\label{eq1}  T(\omega)=(\frac{\Gamma}{2}^{2})*((\frac{A_{1}}{(\omega-\omega_{1})^{2}+\frac{\Gamma}{2}^{2}})+(\frac{A_{2}}{(\omega-\omega_{2})^{2}+\frac{\Gamma}{2}^{2}})+\cdots+(\frac{A_{6}}{(\omega-\omega_{6})^{2}+\frac{\Gamma}{2}^{2}})) T(\omega)=(\frac{\Gamma}{2}^{2})*((\frac{A_{1}}{(\omega-\omega_{1})^{2}+\frac{\Gamma}{2}^{2}})+(\frac{A_{2}}{(\omega-\omega_{2})^{2}+\frac{\Gamma}{2}^{2}})+\cdots+(\frac{A_{6}}{(\omega-\omega_{6})^{2}+\frac{\Gamma}{2}^{2}}))+offset  \end{equation}  Where the normal equation for a Lorentzian is,  \begin{equation}\label{eq2}  T(\omega)=(\frac{\Gamma}{2}^{2})*((\frac{A}{(\omega-\omega_{0})^{2}+\frac{\Gamma}{2}^{2}}) T(\omega)=(\frac{\Gamma}{2}^{2})*(\frac{A}{(\omega-\omega_{0})^{2}+\frac{\Gamma}{2}^{2}})  \end{equation}