David LeBauer edited unit conversions.md  almost 10 years ago

Commit id: ab441022e6af859fc262d549aa9cc1cbc8328f5f

deletions | additions      

       

NB: Many of these conversions have been automated within [PEcAn](https://github.com/PecanProject/pecan).  ### Root Respiration  Convert from root respiration data reported in George et al (where O\(_2\)  was measured in µL to units of mass  In the appendix table, George 2003 reports the range of root respiration  rates, converted to \(15°C\) and standard units:  \([11.26, 22.52] \frac{\mathrm{nmol CO}_2}{\mathrm{g}\ \mathrm{s}}\)  In the original publication Allen (1969), root respiration was measured  at \(27°C\). The values can be found in [Table 3] (#Table 3) and [Figure 2] (#Figure 2). The  data include a minimum (Group 2 Brunswick, NJ plants) and a maximum  (Group 3 Newbery, South Carolina), which I assume are the ones used by  George 2003:  \([27.2, 56.2] \frac{\mu\mathrm{L}\ \mathrm{O}_2}{10\mathrm{mg}\ \mathrm{h}}\)  Transformed George 2003 measurements back to the measurement temperature  using a rearrangement of equation 1 from George, the standardized  temperature of \(15°C\) stated in the Georgeh table legend, and  Q\(_{10} = 2.075\) from George 2003, and the measurement temperature of  \(27°C\) reported by Allen 1969:  \(R_T = R_{15}[\exp(\ln(Q_{10})(T- 15))/10]\)  \([11.26, 22.52] * exp(log(2.075)*(27 - 15)/10)\)  Now we have the values that we would have expected to find in the Allen  paper, except that the units need to be converted back to the original:  \([27.03,54.07] \mathrm{nmol CO}_2\ \mathrm{g}^{-1}\mathrm{s}^{-1}\)  #### Required constants  - \(1\ \mathrm{mol}\ \mathrm{O}_2 = 1\ \mathrm{mol}\ \mathrm{CO}_2\)  since respiration is  \(\mathrm{CH}_2\mathrm{O} + \mathrm{O}_2 \to \mathrm{CO}_2 + \mathrm{H}_2\mathrm{O}\)  - Density of \(\mathrm{O}_2\) at \(27^\circ C\):  \(\frac{7.69 \times 10^5\ \mathrm{ml}\ \mathrm{O}_2}{\mathrm{g}\ \mathrm{O}_2}\)  first assume that Allen converted to sea level pressure (101 kPa),  although maybe they were measured at elevation (Allen may have  worked at \~ 900 kPa near Brevard, NC)  - Molar mass of \(\mathrm{O}_2\):  \(\frac{32\mathrm{g}\ \mathrm{O}_2}{\mathrm{mol}}\)  - Treat 10mg, which is in the unit of root mass used by Allen, as a  unit of measurement for simplicity  Now convert  \([27.03,54.07] \mathrm{nmol CO}_2\ \mathrm{g}^{-1}\mathrm{s}^{-1}\) to  units of  \(\frac{\mu\mathrm{L}\ \textrm{O}_2}{10\mathrm{mg}\ \mathrm{root}\ \mathrm{h}}\).  The expected result is the original values reported by Allen:  \([27.2, 56.2] \frac{\mu\mathrm{L}\ \mathrm{O}_2}{10\mathrm{mg}\ \mathrm{h}}\)  \([27.03, 54.07]\ \frac{\mathrm{nmol}\ \mathrm{CO}_2}{\mathrm{g}\ \mathrm{root}\ \mathrm{s}} \times \frac{1\ \mathrm{g}}{100\times10\mathrm{mg}} \times \frac{3600\ \mathrm{s}}{\mathrm{h}} \times \frac{\mathrm{nmol}\ \mathrm{O}_2}{\mathrm{nmol}\ \mathrm{CO}_2}\frac{3.2 \times 10^{-8}\ \mathrm{g}\ \mathrm{O}_2}{\mathrm{nmol}\ \mathrm{O}_2}\times \frac{7.69\times10^5\ \mu\mathrm{L}\ \mathrm{O}_2}{\mathrm{g}\ \mathrm{O}_2}\)  The result is:  \([23.8, 47.8] \frac{\mu\mathrm{L}\ \textrm{O}_2}{10\mathrm{mg}\ \mathrm{root}\ \mathrm{h}}\)  These are the units reported in the Allen paper, but they appear to be  off by the temperature conversion factor,  \(exp(log(2.075)*(27 - 15)/10)=2.4\), e.g.  \([11.9, 23.9]\times 2.4= [28.6,57.4]\), values which are only 5 and 2  percent larger than the original values of \([27.2, 56.2]\), respectively  to be acceptable, but not exact. Since the ratio of observed:expected  values are different, it is not likely that Q\(_{10}\) or the atmospheric  pressure at time of measurement would explain this error.  #### Convert to units in BETYdb, find \(\textrm{k}\):  \(\textrm{k}\times\frac{\mu\mathrm{L}\ \textrm{O}_2}{10\mathrm{mg}\ \mathrm{root}\ \mathrm{h}} = \frac{\mu\mathrm{mol}\ \mathrm{CO}_2}{\mathrm{kg}\ \mathrm{s}}\)  \(k = \frac{\mathrm{g}\ \mathrm{O}_2}{7.69\times10^5\ \mu\mathrm{L}\ \mathrm{O}_2}\times\frac{\mu\mathrm{mol}\ \mathrm{O}_2}{3.2 \times 10^{-5}\ \mathrm{g}\ \mathrm{O}_2} \times \frac{10^5\ \times 10\mathrm{mg}}{\mathrm{kg}} \times \frac{\mathrm{h}}{3600\ \mathrm{s}}=\)  \(= 1.13\)    **Table 9: Useful conversions for entering site, management, yield, and trait data** 

| g m\(^{-2}\) y\(^{-1}\) | Mg ha\(^{-1}\) y\(^{-1}\) | \(Y= X/100\) | |  | kg | mg | \(Y=X\times 10^6\) | |  | cm\(^2\) | m\(^2\) | \(Y=X\times 10^4\) | |