Essential Maintenance: All Authorea-powered sites will be offline 9am-10am EDT Tuesday 28 May
and 11pm-1am EDT Tuesday 28-Wednesday 29 May. We apologise for any inconvenience.

Anisha Keshavan added I_ve_added_the_full__.tex  over 8 years ago

Commit id: 3f21290b5183f358e2bcb9190305794c869dbbe8

deletions | additions      

         

I've added the full derivation to the Appendix, specifically:  The proof for this is found in Introduction to the Theory of Statistics (1974) by Mood, Graybill and Boes \cite{boes1974introduction}, section 2.3, Thoerem 3:  Let $X$ and $Y$ be two random variables where $var[XY]$ exists, then  \begin{equation}  \begin{split}  var[XY] = \mu_Y^2var[X] + \mu_X^2var[Y] + 2\mu_X\mu_Ycov[X,Y]   \\  - (cov[X,Y])^2 + E[(X-\mu_X)^2(Y-\mu_Y)^2]   \\  + 2\mu_YE[(X-\mu_X)^2(Y-\mu_Y)] + 2\mu_XE[(X-\mu_X)(Y-\mu_Y)^2]  \end{split}  \end{equation}  which can be obtained by computing $E[XY]$ and $E[(XY)^2]$ when $XY$ is expressed as  \begin{equation}  XY = \mu_X\mu_Y + (X-\mu_X)\mu_Y + (Y-\mu_X)\mu_X + (X-\mu_X)(Y-\mu_Y)  \end{equation}  If $X$ and $Y$ are independent, then $E[XY] = \mu_X\mu_Y$, the covariance terms are 0, and  \begin{equation}  E[(X-\mu_X)^2(Y-\mu_Y)^2] = E[(X-\mu_X)^2]E[(Y-\mu_Y)^2] = var[X]var[Y]  \end{equation}  and  \begin{equation}  \mu_YE[(X-\mu_X)^2(Y-\mu_Y)] = E[(X-\mu_X)^2]E[(Y-\mu_Y)] = 0  \end{equation}  \begin{equation}  \mu_XE[(Y-\mu_Y)^2(X-\mu_X)] = E[(Y-\mu_Y)^2]E[(X-\mu_X)] = 0  \end{equation}  Which gives  \begin{equation}  var[XY] = \mu_X^2var[Y] + \mu_Y^2var[X] + var[X]var[Y]  \end{equation}