Dat Do edited beginproblem_a_You_a.tex  about 10 years ago

Commit id: 7156475fe0c7e760f23eb156dab0e6f290e5e3d5

deletions | additions      

       

Base Case: For $W(1)$, $2^{1+1}-1-2 = 1$ which is correct since $W(1) = 1$.  \\  Assume $W(k) = 2^{k+1}-k-2$, we must show that $W(k+1) = 2^{k+2}-k-3$  \\  Based off of the sequence $W(n)$  \begin{itemize}  \item $W(1) = 1$  \item $W(2) = 4$   \item $W(3) = 11$   \item $W(4) = 26$  \item $W(5) = 57$  \end{itemize}  We see that each term $W(k+1) = 2(W(k)) + (k+1)$