Joe Corneli move workshop diagram up; close #19  over 8 years ago

Commit id: 6bb1bb50c515ea5e97212820bb72dcf935980592

deletions | additions      

       

\section{Our computational model of serendipity} \label{sec:our-model}  Figure \ref{model-diagram} \ref{fig:model}  recapitulates the ideas from the previous section.Dashed paths show some of the things that could go wrong.  The serendipity trigger might not arise, or might not attract  interest. If interest is aroused, a path to a useful result may not  be sought, or if it is sought, may not be found. If a result is  developed, it may turn out not be of value. Prior experience with  related problems may help with the exploration, but may also restrict  innovative thinking. Multiple tasks, influences, and contexts can help to foster  an inventive frame of mind, and send the investigator in a  new and fruitful direction -- but they can also be distractions.  Failures of curiosity or sagacity will undermine the process -- and  although serendipity does not reduce to luck, there is some luck  involved as well.  \begin{figure}[h!] Figure \ref{fig:1a} is a heuristic map of the features of serendipity  introduced in Section \ref{sec:by-example}.  %  Dashed paths ending in X's show some of the things that can go wrong.  A serendipity trigger might not arise, or might not attract interest.  If interest is aroused, a path to a useful result may not be sought,  or if it is sought, may not be found. If a result is developed, it  may turn out to be of little value. Prior experience with a related  problem could be informative, but could also restrict innovative  thinking. Similarly, multiple tasks, influences, and contexts can  help to foster an inventive frame of mind, but they can also be  distractions.  Figure \ref{fig:1b} removes these unserendipitous paths to focus on  the key features of the model.  %  The \textbf{serendipity trigger} is denoted here by $T$.   %  The \textbf{prepared mind} corresponds to those preparations, labeled  $p$ and $p^{\prime}$, that are relevant to the discovery and invention  phases, respectively. These preparations may include training,  current phenomenal experience, access to relevant knowledge sources,  and so on.  %  A \textbf{focus shift} takes place when the trigger is observed to be  interesting. The now-interesting trigger is denoted $T^\star$, and is  common to both the discovery and the invention phases.  %  %  The \textbf{bridge} is comprised of the actions based on $p^{\prime}$  that are taken on $T^\star$ leading to the \textbf{result} $R$, which is ultimately given a positive evaluation.  \afterpage{\clearpage}  \begin{figure}[p]  \begin{minipage}[b]{\textwidth}  {\centering  \input{heuristic-map-tikz}  \par}  \subcaption{A heuristic map, showing serendipitous and unserendipitous outcomes}\label{fig:1a}  \end{minipage}  \medskip  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  \begin{minipage}[b]{\textwidth}  {\centering  \resizebox{1.02\textwidth}{!}{  \begin{tikzonimage}[width=.45\textwidth,angle=270]{figures/model-diagram/serendipity-attractor-bw}%[tsx/show help lines]  \node (dynamic) at (.1, .47) {\emph{dynamic world}};  \node (trigger) at (.05, .255) {\textbf{trigger}};  \node (chance) at (.045, .165) {chance};  \node (bridge) at (.46, .84) {\textbf{bridge}};  \node (result) at (.055, .665) {\textbf{result}};  \node (result)[text width=2cm,align=center] at (.7, .71) {\textbf{prepared mind}};  \node (focus) at (.93, .88) {{\bf \textsc{focus shift}}};  \node (curiosity)[rotate=35] at (.44,.58) {curiosity};  \node (sagacity)[rotate=-30] at (.72,.45) {sagacity};  \node (value) at (.04, .755) {value};  \node (influences)[text width=2cm,align=center,rotate=30] at (.99, .60) {{\small\baselineskip=2pt \emph{multiple influences}\par}};  \node (tasks)[text width=1.5cm,align=center,rotate=30] at (.85, .39) {{\small\baselineskip=2pt \emph{multiple tasks}\par}};  \node (contexts)[text width=1.5cm,align=center,rotate=30] at (.545, .47) {{\small\baselineskip=2pt \emph{multiple contexts}\par}};  \draw[-latex] (.05,.03) -- (.15,.03) node [midway, above] {\itshape{\scshape{discovery}}};  \draw[-latex] (.95,.03) -- (.85,.03) node [midway, above] {\itshape{\scshape{invention}}};  %% Adding an arrowhead  \draw[-{Latex[width=2mm]}] (-.001,.6265) -- (-.003,.6265);  % \node (begin1) at (-.02,.303) {\handmark};  \node (yes1) at (-.02,.6265) {\sunmark};  \node (no1) at (1.005, .165) {\ymark};  \node (no2) at (1.005, .3) {\ymark};  \node (no3) at (.63, .32) {\ymark};  % \node (no4) at (-0.02, .625) {\xmark};  \end{tikzonimage} \input{schematic-tikz}  %\includegraphics[width=.8\textwidth]{schematic}  \par}  \subcaption{A simplified process schematic, showing the key features of the model}\label{fig:1b}  \end{minipage}  \medskip  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  \begin{minipage}[b]{\textwidth}  {\centering  \input{ww-generative-tikz}  %\includegraphics[width=.8\textwidth]{schematic}  \par}}  \vspace{-.5cm}  \caption{A heuristic map of the features \par}  \smallskip  \subcaption{A boxes-and-arrows diagram, showing one possible implementation architecture}\label{fig:1c}  \end{minipage}  \bigskip  \caption{Three representations  ofserendipity introduced in  Section \ref{sec:by-example}. The central black line traces first  the process of \emph{discovery} in which an initial trigger combines  with mounting curiosity to effect a \emph{focus shift}, followed by a  process of \emph{invention} in which a prepared mind draws on  various resources and makes use of its powers of sagacity to find a bridge to  a valuable result. In a typical chaotic fashion, paths that are initially nearby can have very different outcomes: some end  in failure of one form or another, while others yield results elements  of differing value.}  \label{model-diagram} serendipity}\label{fig:model}  \end{figure}  Figure \ref{fig:1c} expands this schematic into a sketch of the  components of one possible idealised implementation of a serendipitous  system. An initial \emph{generative process} is assumed at the start.  This may be based on observations of the outside world, or it may be a  computational process. In any case, elements from a data stream are  passed on to the next stage of the process. After running a feedback  loop, some of this data is singled out, and perhaps further marked up,  so that it becomes ``interesting.'' Note that this designation need  not arise all at once: rather, it the outcome of a \emph{reflective  process}. In the implementation envisioned here, this process makes  use of two primary functions: $p_1$, which notices aspects of the  data, and $p_2$, which offers additional reflections. Together, these  functions produce a ``feedback object,'' $T^{\star}$, which consists  of the original data and added metadata. This is passed on to an  \emph{experimental process}, which has the task of understanding what  makes the data interesting and what it may be useful for. This is  again an iterative process. Once sufficient understanding of the data  and its potential implications has been reached, a result is  generated, which is passed to a final \emph{evaluation process}, and,  from there, to applications.   The ellipses in the final step are meant to suggest that applications  are open-ended; however, an important class of applications will  result in changes to one or more of the system's modules, for example  by expanding the knowledge base used by one or more of the components.  Note that earlier components of the workflow cannot, in general,  anticipate what the subsequent phases will produce or achieve. If  these operations could be anticipated, we would not say that the  system was serendipitous. Another way to put this is that serendipity  does not adhere to one specific part of the system, but to its  operations as a whole. Furthermore, a machine could be built that  implements all of the steps depicted in this diagram, and yet, if it  only generated uninteresting results it would not be called  ``serendipitous.''  Summarising, we propose the following definition for serendipity,  expressed in two phases: discovery and invention. The definition  centres on the four components of serendipity that were outlined  above. These can be made sense of and evaluated with reference to the  four dimensions of serendipity. These, in turn, are understood to be  embedded in an environment exhibiting many, but not necessarily all,  of the environmental factors listed above. phases.  \begin{quote}  \begin{enumerate}[itemsep=2pt,labelwidth=9em,leftmargin=9em,rightmargin=2em] \begin{enumerate}[itemsep=2pt,labelwidth=9em,leftmargin=7em,rightmargin=2em]  \item[\emph{(\textbf{1 - Discovery})}] \emph{Within a system with a prepared mind, a previously uninteresting serendipity trigger arises due to circumstances that the system does not control, and is classified as interesting by the system; and,}  \item[\emph{(\textbf{2 - Invention})}] \emph{The system, by subsequently processing this trigger and background information together with relevant reasoning, networking, or experimental techniques, obtains a novel result that is evaluated favourably by the system or by external sources.}  \end{enumerate}  \end{quote}  \noindent This definition can be summarised schematically The features of our model match and expand upon Merton's  \citeyear{merton1948bearing} description of the ``serendipity  pattern.'' $T$ is an unexpected observation; $T^\star$ highlights its  interesting or anomalous features and recasts them  as follows, with letters referencing to ``strategic  data.'' Finally,  the key condition result $R$  and components introduced its evaluation may lead to  updates to the system's operations that will inform further phases of  research. As we will show  in the literature survey:   {\centering  \input{schematic-tikz}  %\includegraphics[width=.8\textwidth]{schematic}  \par} following section, the other  elements of the conceptual framework described in Section  \ref{sec:by-example} help to flesh out the model, to offer quite  detailed evaluation criteria.         

The features of our this  model match and expand upon Merton's \citeyear{merton1948bearing} description of the ``serendipity pattern.'' $T$ is an unexpected observation; $T^\star$ highlights its interesting or anomalous features and recasts them as ``strategic data''; and, finally, data.'' Finally,  the result $R$ and its evaluation  may include lead to  updates to $p$ or $p^{\prime}$ the system's operations  that will  inform further phases of research.From the point of view of the system under consideration, $T$ is  indeterminate. Furthermore, one must assume that relatively few of  triggers $T^\star$ that are identified as interesting actually lead to  useful results; in other words, the process is fallible and  \textbf{chance} is likely to play a role.  %  The prior training $p$ causes interesting features  to be extracted, even if they are not necessarily useful; $p^{\prime}$  asks how these features \emph{might} be useful. These routines   suggest the relevance of a computational model of \textbf{curiosity}.  %  Far from being a simple look-up rule, $p^{\prime}$ involves creating new knowledge. A simple example is found in clustering systems, which generate new categories on the fly. A more complicated example, necessary in the case of updating $p$ or $p^{\prime}$, is automatic programming. There is a need for \textbf{sagacity} in this sort of affair.  %  Judgment of the \textbf{value} of the result $R$ may be carried out  ``locally'' (as an embedded part of the process of invention of $R$)  or ``globally'' (i.e.~as an external process).  As noted, $T$ (and $T^\star$) appears within a stream of data with  indeterminacy. There is an additional feedback loop, insofar as  products $R$ influence the future state and behaviour of the system.  Thus, the system exists in a \textbf{dynamic world}.  %  Our model separates the  ``context of discovery'', involving prior preparations $p$, from the  ``context of invention'' involving prior preparations $p^{\prime}$.  Both of these, and the data they deal with, may be subdivided further into \textbf{multiple contexts}.   %  And correspondingly, since both $T$ and $T^\star$ may be complex, they  may be processed using multiple sub-processes that deal with  \textbf{multiple tasks} using different skills sets.  %  The process as a whole may be multiplied out across different  communicating investigators, so that the final result bears the mark  of \textbf{multiple influences}.         

The key steps map quite conveniently into the schematic description of serendipity that we introduced in Section \ref{sec:our-model}:  \input{ww-schematic-tikz}         

}  \begin{tikzpicture}[auto, node distance=2cm,>=latex']  \node [sum] (sum1) (A-sum1)  {}; \node [input, name=pinput, above left=.7cm and .7cm of sum1] (pinput) A-sum1] (A-pinput)  {}; \node [input, name=tinput, left of=sum1] (tinput) of=A-sum1] (A-tinput)  {}; \node [input, name=minput, below left of=sum1] (minput) of=A-sum1] (A-minput)  {}; \node [input, name=minput, right of=sum1] (moutput) of=A-sum1] (A-moutput)  {}; \draw [->] (pinput) (A-pinput)  -- node{$p$} (sum1); (A-sum1);  \draw [->] (tinput) (A-tinput)  -- node{\vphantom{{\tiny g}}$T$} (sum1); (A-sum1);  %  \draw [->] (sum1) (A-sum1)  -- node{\vphantom{{\tiny g}}$T^{\star}$} (moutput);  \end{tikzpicture}  \hspace{1cm}  \begin{tikzpicture}[auto, node distance=2cm,>=latex'] (A-moutput);  \node [sum] (sum1) [sum, right=2cm of A-sum1] (B-sum1)  {}; \node [input, name=pinput, above left=.7cm and .7cm of sum1] (pinput) B-sum1] (B-pinput)  {}; \node [input, name=tinput, left of=sum1] (tinput) of=B-sum1] (B-tinput)  {}; \node [input, name=minput, below left of=sum1] (minput) of=B-sum1] (B-minput)  {}; \node [sum, right of=sum1] (sum2) of=B-sum1] (B-sum2)  {}; \node [input, name=minput, right of=sum2] (moutput) of=B-sum2] (B-moutput)  {}; \draw [->] (pinput) (B-pinput)  -- node{$p^{\prime}$} (sum1); (B-sum1);  \draw [->] (tinput) (A-sum1)  -- node{\vphantom{{\tiny g}}$T^{\star}$} (sum1); (B-sum1);  \draw [->] (sum1) (B-sum1)  -- node{\vphantom{{\tiny g}}$R$} (sum2); (B-sum2);  \draw [->] (sum2) (B-sum2)  -- node{$|R|>0$} (moutput); (B-moutput);  \end{tikzpicture}  \endgroup         

\usepackage{textcomp}   \usepackage{setspace}  \usepackage{caption}   \usepackage{subcaption}   \usepackage{afterpage}  \usepackage{slantsc}  \usepackage{pifont}  \newcommand{\xmark}{\ding{54}}% 

% \linenumbers  \input{abstract.tex}  \setcounter{footnote}{0}  %\tableofcontents  %\newpage  \input{1introduction.tex}  %% The literature review  \input{2literature.tex} 

% \input{related-work.tex}  %% Our core definition  \input{3model.tex}  \input{4definition.tex} %\input{4definition.tex}  %  \input{5connections.tex} \input{6SPECS-begins.tex}  \input{7SPECS-continues.tex}  % SPECS-begins.tex 

% SPECS-continues.tex  %% Development of the idea with examples  \input{8cc-intro.tex}  \input{9ww-intro.tex} %\input{9ww-intro.tex}  % figures/ww-serendipity/ww-serendipity.png  \input{10ww-design.tex} %\input{10ww-design.tex}  % figures/ww-schematic/ww-schematic.png  \input{11ww-analysis.tex} %\input{11ww-analysis.tex}  \input{12discussion}  \input{13conclusion}         

single/.style={draw, anchor=text, rectangle},  ]  \node (discovery) {\textbf{\emph{Discovery:}}};  % poet ``poet  generates poem poem''  \node[single, right=8mm of discovery.east,text width=1.5cm] (poet) {\emph{text\\ generator}}; {\emph{generative\\ process}};  \node[single, right=4mm right=6mm  of poet.east] (poem) {T}; {$T$};  \draw [-latex] (poet.east) -- (poem.west);  % critic ``critic  listens to poem and offers feedback  \node[single, right=4mm feedback''  \node[ellipse, draw, right=9mm  of poem.east,text width=1.5cm] width=1.4cm]  (critic) {comment generator}; {\emph{feedback}};  \draw [-latex] (poem.east) -- (critic.west);  \node[single, above=8mm of critic.north,text width=1.5cm] (experience) {\emph{reflection\\ process}};  \node[draw,diamond,inner sep =.3mm, above  right=4mm and 3mm of critic] (comment) {\raisebox{1mm}{$p\vphantom{^{\prime}}_1$}} ;  \node[draw,diamond,inner sep =.3mm, above left=4mm and 3mm of critic] (reflection) {\raisebox{1mm}{$p\vphantom{^{\prime}}_2$}} ;  \draw[-latex,thick] ([yshift=1mm]critic.east) to [out=0,in=270] (comment.south) ;  \draw[-latex,thick] (comment.north) to [out=90,in=0] (experience.east) ;  \draw[-latex,thick] (experience.west) to [out=180,in=90] (reflection.north) ;  \draw[-latex,thick] (reflection.south) to [out=270,in=140] ([yshift=1.5mm]critic.west) ;  % nonprinting point to use to bend curve  \coordinate[below right=3mm and 7mm  of critic.east] critic] (mid1);  \node[single, below left=6mm and 4mm of critic]  (feedback) {F}; {$T^{\star}$};  \node[below=.65cm of discovery] (focusshift) {{\small \textbf{\emph{[focus shift]}}}};  % draw the first curve into focus shift  \draw [-latex] (critic.east) -- (feedback.west); ([yshift=-1mm]critic.east) to[out=0,in=90] (mid1) to[out=270,in=0] (feedback.east);  %%% Next phase  \node[below=1cm \node[below=2cm  of discovery] (invention) {\textbf{\emph{Invention:}}};% poet integrates feedback  \node[single, right=8mm of invention.east] (feedbackcont) {F};  \node[single, right=8mm of feedbackcont.east,text width=1.7cm] (integrator) {\emph{feedback integrator}};  \draw [-latex] (feedbackcont.east) -- (integrator.west);  \node[single, below=8mm % ``poet integrates feedback''  \node[ellipse, draw, right=12mm  of integrator.south,text width=1.5cm] (explainer) {feedback explainer}; invention.east,text width=2.2cm] (integrator) {\emph{understanding}};  \node[single, below right=2mm and 2mm of integrator] (question) {Q};  \node[single, below % nonprinting point to use to bend curve  \coordinate[above  left=2mm and 2mm 9mm  of integrator] (answer) {A}; (mid2);  \draw[-latex] ([yshift=-1.5mm]integrator.east) to [out=0,in=90] (question.north) ;  \draw[-latex] (question.south) to [out=270,in=0] (explainer.east) ;  \draw[-latex] (explainer.west) to [out=180,in=270] (answer.south) ;  \draw[-latex] (answer.north) to [out=90,in=180] ([yshift=-1.5mm]integrator.west) ; % draw the second curve out from focus shift  \draw [-latex] (feedback.west) to[out=180,in=90] (mid2) to[out=270,in=160] (integrator.west);  \node[single, right=8mm of integrator.east] (problem) {X}; % ``poet asks questions about the feedback''  \draw [-latex] (integrator.east) -- (problem.west); \node[single, below=9mm of integrator.south,text width=2cm] (explainer) {\emph{experimental\\ process}};  % poet reflects on feedback \node[draw,diamond,inner sep =.3mm, below right=4mm  and updates codebase 5mm of integrator] (question) {\raisebox{1mm}{$p^{\prime}_1$}};  \node[draw,diamond, inner sep =.3mm, below left=4mm and 5mm of integrator] (answer) {\raisebox{1mm}{$p^{\prime}_2$}};  \node[single, right=4mm of problem.east,text width=1.5cm] (pgrammer) {\emph{code}\\ \emph{generator}}; \draw[-latex,thick] ([yshift=-1mm]integrator.east) to [out=0,in=90] (question.north) ;  \draw[-latex,thick] (question.south) to [out=270,in=0] (explainer.east) ;  \draw[-latex,thick] (explainer.west) to [out=180,in=270] (answer.south) ;  \draw[-latex,thick] (answer.north) to [out=90,in=200] ([xshift=1mm,yshift=-1.8mm]integrator.west) ;  \draw [-latex] (problem.east) -- (pgrammer.west); \node[yshift=1mm,single, right=10mm of integrator.east] (problem) {$R$};  \node[single, right=4mm of pgrammer.east,text width=.3cm] (etc) {...}; \draw [-latex] ([yshift=1mm]integrator.east) -- (problem.west);  % ``poet reflects on feedback and updates codebase''  \node[single, right=6mm of problem.east,text width=1.6cm] (pgrammer) {\emph{evaluation}\\ \emph{process}};  \draw [-latex] (problem.east) -- (pgrammer.west);  \node[single, right=4mm of pgrammer.east,text width=.3cm] (etc) {...};  \draw [-latex] (pgrammer.east) -- (etc.west);  \end{tikzpicture}