Benedict Irwin edited Introduction.tex  over 8 years ago

Commit id: e88ca9b9017827d53c54418484b6642d3276a035

deletions | additions      

       

\section{Introduction}  For some $N $n  \in \mathbb{Z}$, \mathbb{N}^0$,  we can represent the number as a binary polynomial of finite order $q$ $q=\lfloor\mathrm{log}_2 n \rfloor_+$  \begin{equation} N=\sum_{k}^{q} n=\sum_{k}^{q}  a_k2^k \end{equation}  with the, $a_k \in {0,1}$. {0,1}$ and \begin{equation}  \lfloor x \rfloor_+ := \Bigg\{\begin{matrix} \lfloor x \rfloor ,& x>0\\0,&x\le0 \end{matrix}  \end{equation}  Then performing a map of the coefficients to some row vector $V $v  \in \mathbb{R^q}$ will produce a construct of the form \begin{equation} N n  \to V:= v:=  \begin{bmatrix}  a_1,a_2,\cdots,a_q  \end{bmatrix}  \end{equation}  Thus, a column vector consisting of elements $N_i $n_i  \in {1,2,..r}$ will map to a matrix of the form \begin{equation} M:=  \begin{bmatrix}  a_{11} & a_{12} & ... & a_{1q} \\