Benedict Irwin edited Ternary Ladders.tex  almost 10 years ago

Commit id: 02f2999372754608d1a32abb9fe06cd7e65f9fdb

deletions | additions      

       

So in Triplet operations exists operations which have an eigenstate of $|\alpha>$ and counting triplets and also binary operations in the same way quarks combine. \begin{equation}  aaa^+|\alpha>=\beta^{\alpha}_{a^+}\beta^{\alpha+\frac{2}{3}}_a\beta^{\alpha+\frac{1}{3}}_a|\alpha> \\  a^+a^+a|\alpha>=\beta^{\alpha}_{a}\beta^{\alpha-\frac{1}{3}}_{a^+}\beta^{\alpha+\frac{1}{3}}_{a^+}|\alpha+1> \\  aaa|\alpha>=\beta^{\alpha}_{a}\beta^{\alpha-\frac{1}{3}}_{a}\beta^{\alpha-\frac{2}{3}}_{a}|\alpha-1>  \end{equation}  For doublet (meson) operations take an operator and it's anti-operator\begin{equation}  \hat{a}^+a^+|\alpha>=\beta^{\alpha}_{a^+}\beta^{\alpha +\frac{2}{3}}_{\hat{a}^+}|\alpha> \\  a^+\hat{a}^+|\alpha>=\beta^{\alpha}_{\hat{a}^+}\beta^{\alpha -\frac{2}{3}}_{a^+}|\alpha>\\  aaa|\alpha>=\beta^{\alpha}_{a}\beta^{\alpha-\frac{1}{3}}_{a}\beta^{\alpha-\frac{2}{3}}_{a}|\alpha-1>  \end{equation}