Benedict Irwin edited Electromagnetism.tex  about 10 years ago

Commit id: 68d6406c19723ffa809d963566de7558300daa15

deletions | additions      

       

\end{bmatrix}  \end{equation}  This would require perhaps a normalisation of $\frac{1}{\sqrt{2}}$ on each matrix. For the potential 4 vector \begin{equation}  A^{\mu}=(\varphi/c,A_x,A_y,A_z)  \end{equation}  Then \begin{equation}  A_{\mu}=eta_{\mu \nu}A^{\nu}  \end{equation}  Which gives \begin{equation}  A_\mu = \begin{bmatrix}  \frac{\varphi}{c} +A_xi+A_yj+A_zk \\  \frac{\varphi i}{c} -A_x +A_yk -A_zj \\  \frac{\varphi j}{c} -A_xk -A_y +A_zi \\  \frac{\varphi k}{c} +A_xj +A_yi-A_z  \end{bmatrix}  =  \begin{bmatrix}  \frac{\varphi}{c} \\  -A_x \\  -A_y \\  -A_z  \end{bmatrix}  +  \begin{bmatrix}  A_x \\  \frac{\varphi}{c} \\  A_z \\  -A_y  \end{bmatrix}  i  +  \begin{bmatrix}  A_y \\  -A_z \\  \frac{\varphi}{c} \\  A_x  \end{bmatrix}  j  +  \begin{bmatrix}  A_z \\  A_y \\  -A_x \\  \frac{\varphi}{c}  \end{bmatrix}  k  \end{equation}