Benedict Irwin edited Ones.tex  about 9 years ago

Commit id: edb7479b861929a938724bf5cc6cfefe215c2c55

deletions | additions      

       

3 & 9 & 1 & 0 & 3 \\  4 & 0 & 1 & 0 & 59 \\  4 & 0 & 2 & 1 & s \\  4 & 0 & 3 & 0 & 3 \\  4 & 0 & 4 & 1 & s \\  4 & 0 & 5 & 0 & 163\\  4 & 1 & 1 & 0 & 103\\  4 & 1 & 2 & 0 & 7 \\  4 & 1 & 3 & 0 & 3 \\  4 & 1 & 4 & 0 & 47 \\  4 & 1 & 5 & 0 & 17 \\  4 & 2 & 1 & 0 & 3 \\  4 & 3 & 1 & 0 & 13 \\  4 & 3 & 2 & 1 & s \\  4 & 3 & 3 & 0 & 3 \\  4 & 3 & 4 & 0 & 23 \\  4 & 3 & 5 & 0 & 29 \\  4 & 4 & 1 & 0 & 79 \\  4 & 4 & 2 & 0 & 53 \\  4 & 4 & 3 & 0 & 3 \\  4 & 4 & 4 & 0 & 523\\  4 & 4 & 5 & 0 & 337\\  4 & 5 & 1 & 0 & 3 \\  4 & 5 & 2 & 0 & 3 \\  4 & 5 & 3 & 0 & 3 \\  4 & 6 & 1 & 0 & 7 \\  4 & 6 & 2 & 0 & 13 \\  4 & 6 & 3 & 0 & 3 \\  4 & 6 & 4 & 0 & 6301\\  4 & 6 & 5 & 0 & 7 \\  \hline 

2&6&1&8\\  3&1&4&4\\  3&2&1&5\\  %new  3&5&1&8\\  3&7&1&10\\  3&8&4&11\\  4&0&2&4\\  %new  4&0&4&4\\  \hline  From this we can see that no primes seem to occur with $N=3$. This can be explained by $1+1+1=3$ from the topology we have built these families into, and then any repetition of numbers by $3,6,9,...$ is certain to have a digit sum divisible by $3$. Thus we may say no family with $N \; mod \; 3=0$ will produce a prime number. This is in addition tot he $a+b \; mod \; 3 =0$ rule.  \end{array}  \end{equation}  Always Non-prime family pairs \begin{equation}