Benedict Irwin edited 9090+3.tex  over 9 years ago

Commit id: 8aef569a5deb54fbebca33f2e471226dbb7b5874

deletions | additions      

       

(90;;55)-1& 0 & \\  (90;;56)-1& 0 & \\  (90;;57)-1& 0 & \\  (90;;58)-1& 0 & \\ 43×[[2114164904862579281183932346723044397463002114164904862579281183932346723044397463002114164904862579281183932346723]]\\  (90;;59)-1& 0 & 79×[[115074798619102416570771001150747986191024165707710011507479861910241657077100115074798619102416570771001150747986191]]\\  (90;;60)-1& 0 & \\  (90;;61)-1& 0 & 11×[[8264462809917355371900826446280991735537190082644628099173553719008264462809917355371900826446280991735537190082644628099]]\\ 

(90;;73)-1& 0 & \\  (90;;74)-1& 1 & (90;;74)-1\\  (90;;75)-1& 0 & 23×...\\  (90;;76)-1& 0 &43?????×...  \\ (90;;77)-1& 0 & \\  (90;;78)-1& 0 & \\  (90;;79)-1& 0 & 29×3134796238244514106583072100313479623824451410658307210031347962382445141065830721003134796238244514106583072100313479623824451410658307210031347962382445141 29×43×7611282473×9578180596676119497063479901434206663440373037131421633305032513428028044431106610444794385191741080502880035410580923888423332883194147047017319  \\ (90;;80)-1& 0 & 19×478468899521531100478468899521531100478468899521531100478468899521531100478468899521531100478468899521531100478468899521531100478468899521531100478468899521531 \\  (90;;81)-1& 1 & (90;;81)-1\\   (90;;82)-1& 0 & \\ 

We see that if $n+1=9m\in\mathbb{Z^0}$, then $(90;;n)-1$ is div by $19$. [8th prime] \\  We see that if $n+2=11m\in\mathbb{Z^0}$, then $(90;;n)-1$ is div by $23$. [9th prime] \\  We see that if $n+5=14m\in\mathbb{Z^0}$, then $(90;;n)-1$ is div by $29$. [10th prime] \\  We see that if $n+14=30m\in\mathbb{Z^0}$, $n+5=21m\in\mathbb{Z^0}$,  then $(90;;n)-1$ is div by $43$. [14th prime] [DUBIOUS! CHECK THIS ONE]\\ \\  We see that if $n+28=30m\in\mathbb{Z^0}$, then $(90;;n)-1$ is div by $61$. [18th prime] \\  We see that if $n+13=33m\in\mathbb{Z^0}$, then $(90;;n)-1$ is div by $67$. [19th prime] \\  We see that if $n+6=13m\in\mathbb{Z^0}$, then $(90;;n)-1$ is div by $79$. [22nd prime] \\  We see that if $n+21=22m\in\mathbb{Z^0}$, then $(90;;n)-1$ is div by $89$. [24th prime] \\  \\  Consider grand-rule:\\  If $n+5=11m\in\mathbb{Z^0}$, then $(90;;n)-1$ is div by $11$. [5th prime] \\  If $n+5=14m\in\mathbb{Z^0}$, then $(90;;n)-1$ is div by $29$. [10th prime] \\  If $n+5=21m\in\mathbb{Z^0}$, then $(90;;n)-1$ is div by $43$. [14th prime] \\  If $n+5=32m$ div $59$,$61$,$67$... ish $97$.  COULD TABULATE/CHART N+... AGAINST Xm\in Z...  Amazingly the huge prime, we will denote, $P_H$=1150747986191024165707710011507479861910241657077100115074798619102416570771001150747986191024165707710011507479861910241657077100115074798619102416570771001150747986191 appears in various forms in the table above. IT features in fill but as the prime repeats itself [as below] it has smaller varients.. This may provide a basis for extra patterns! [Investigate] , as the 909091 type patterns did for $11111$ patterns. 

The origin of such repeating sequences is clear, Due to the periodic occurences of prime factors, at every occurence we will have a periodic sequence, divided by some prime. Which then goes on to generate another pseudo periodic sequence.  p_H=3134796238244514106583072100 \\  q_H=31347962382445141 \\  \begin{equation}  \begin{array}  \hline  N & p? & fac & dig & square?\\  \hline  (p_H;;0)|q_H & 0 & 23×743×1834394194069 & 17 & 0\\  (p_H;;1)|q_H & 0 & 89×223×614701×25695112744556108783455528889830703 & 45 & 0\\  (p_H;;2)|q_H & 0 & & 73 & 0\\  (p_H;;3)|q_H & 0 & & 101 & 0\\  (p_H;;4)|q_H & 0 & & 129 & 0 \\  (p_H;;5)|q_H & 0 & 43×7611282473×9578180596676119497063479901434206663440373037131421633305032513428028044431106610444794385191741080502880035410580923888423332883194147047017319 & 157 & 0 \\  (p_H;;6)|q_H & & & 185 & 1 \\  \hline  \end{array}  \end{equation}