Benedict Irwin edited 9090+3.tex  over 9 years ago

Commit id: 5faa1e9ad302b172dfa99bfe23af180926338322

deletions | additions      

       

\hline  (90;;n)-1 & p? & rep \\  \hline  (90;;0)-1 & 0 & -1 \\  (90;;1)-1 & 1 & 89 \\  (90;;2)-1 & 0 & 61×149 \\  (90;;3)-1 & 1 & (90;;3)-1 \\ 

(90;;28)-1& 0 & 11×12510149579×241782987968309×2732287447716234951247271071909 \\  (90;;29)-1& 0 & \\  (90;;30)-1& 0 & 158017×5810155517×7902611413×125298282523772060506686627061457377 \\  (90;;31)-1& 0 & \\ (90;;32)-1& 0 & 61×2753×5003×10820336463017226267040784373271032300130570655610707711 \\  (90;;33)-1& 0 & \\  (90;;34)-1& 0 & 111599×8001491×101806636802827328234288273157274881181940184393696879221 \\  (90;;35)-1& 0 &19×349×795854063×9169675171×187862846189515179803136059557978767109168639603\\ & 19×349×795854063×9169675171×187862846189515179803136059557978767109168639603\\  (90;;36)-1& 1 & (90;;36)-1 \\  (90;;37)-1& 0 & 29×43×179×125014859×4215214153×772870180347371377158398648839149241971606696850039 \\  (90;;38)-1& 0 & \\  (90;;39)-1& 0 & 11×83×368059×1276183×779741628373×2718663269413902264178064824406985844680249085885313\\  (90;;40)-1& 0 & \\  (90;;41)-1& 0 & 181×1913×201781×130116837727433457355956869977679779763086794616103563301101019787234673 \\  (90;;42)-1& 0 & \\  (90;;43)-1& 0 & \\  (90;;44)-1& 0 & \\  (90;;45)-1& 0 & 89×233×1172740043×2294671471×16290676390868631020830767058415390673419786566840260623690267053549 \\  \hline  \end{array}  \end{equation}  We see that if $n+0=m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $1$. [0th prime?]\\  We see that if $n+5=11m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $11$. [5th prime]\\  We see that if $n-8=9m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $19$. [8th prime] \\  Pot_{lly} if $n-9=11m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $23$. [9th prime] \\  We see that if $n-9=14m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $29$. [10th prime] \\  We see that if $n-1=22m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $89$. [24th prime] \\  Pot_{lly} if $n-2=30m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $61$. [18th prime] \\  Pot_{lly} if $n-7=13m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $79$. [22nd prime] \\  Pot_{lly} if $n+14=30m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $43$. [14th prime]\\  Try n-10 = 7m  9,23,37 10th prime 29...  7,20, 22nd prime 79...  n-7=13m  COULD TABULATE/CHART N+... AGAINST Xm\inZ...  primes of form (90;;n)+1: $(90;;n)+1$:  2, 3, 9, 15, 26, 33, 146, 320, 1068, 1505 \\ primes of form (90;;n)-1: $(90;;n)-1$:  1, 3, 4, 11, 15, 21, 36,  \\ Twin primes of form $(90;;n)\pm1$ 3, 15, ...  Now the second sequence doesn't appear to be recoginsed by OEIS. We require a way of finding the two sequences, then we may identify very large double primes.