Benedict Irwin edited Primality.tex  over 9 years ago

Commit id: 4e51b16b3d43d63c2a71d0ef429fe4883ad71deb

deletions | additions      

       

1;2n\in\mathbb{Z} & 11 \\  1;3n\in\mathbb{Z} & 3,37 \\  1;4n\in\mathbb{Z} & 101 \\  1;5n\in\mathbb{Z} & 41 41,271  \\ 1;6n\in\mathbb{Z} & 13 \\  1;7n\in\mathbb{Z} & 239 239,4649  \\ 1;8n\in\mathbb{Z} & 73 \\  1;9n\in\mathbb{Z} & 3^2,333667 \\  1;10n\in\mathbb{Z} & 9091 \\  1;11n\in\mathbb{Z} & 21649,513239 \\  1;12n\in\mathbb{Z} & 9901 \\  1;13n\in\mathbb{Z} & 53,79,265371653 \\  1;14n\in\mathbb{Z} & 9901 \\  1;15n\in\mathbb{Z} & 9901 \\  1;16n\in\mathbb{Z} & 9901 \\  1;17n\in\mathbb{Z} & 9901 \\  1;18n\in\mathbb{Z} & 9901 \\  1;19n\in\mathbb{Z} & 1;19 \\  \hline  \end{array}  \end{equation}  This is curious as the prime is not in ascending order. There are multiples, which together would make some other factor. We have for $3$ and $9$, [thus $27$ ...] an interesting relationship where the number is as divisible by $3$ as the integer prefactor $m$ is... We note that $n\in\mathbb{P}$ that are not $2$ appear to have two, larger primes introduced as divisible factors. (sometimes more? $13$. [semiprime?].