Benedict Irwin edited Primality.tex  over 9 years ago

Commit id: 1dae260b2b2d0b3d6c24c1cbed01761d2de86354

deletions | additions      

       

1;33 & 0 & 3×37×67×21649×513239×1344628210313298373 \\  1;34 & 0 & 11×103×4013×2071723×5363222357×21993833369 \\  1;35 & 0 & 41×71×239×271×4649×123551×102598800232111471 \\  1;36 & 0 & 3^2×7×11×13×19×37×101×9901×52579×333667×999999000001 \\  1;37 & 0 & 2028119×247629013×2212394296770203368013 \\  1;38 & 0 & 11×909090909090909091×1111111111111111111 \\  1;39 & 0 & 3×37×53×79×265371653×900900900900990990990991 \\  1;40 & 0 & 11×41×73×101×137×271×3541×9091×27961×1676321×5964848081 \\  1;41 & 0 & 83×1231×538987×201763709900322803748657942361 \\  1;42 & 0 & 3×7^2×11×13×37×43×127×239×1933×2689×4649×459691×909091×10838689 \\  \end{array}  \end{equation}  Divisors of $n$ and prime divisors of $1;n$ comparison table.  \begin{equation}  \begin{array}{|c|c|c|}  \hline  n & \sigma_0(n) & p_d(1;n) \\  \hline  1 & 1 & 0 \\  2 & 2 & 1 \\  3 & 2 & 2 \\  4 & 3 & 2 \\  5 & 2 & 2 \\  6 & 4 & 5 \\  7 & 2 & 2 \\  8 & 4 & 4 \\  9 & 3 & 3^* \\  10 & 4 & 4 \\  11 & 2 & 2 \\  12 & 6 & 7 \\  13 & 2 & 3 \\  14 & 4 & 4 \\  15 & 4 & 6 \\  16 & 5 & 6 \\  17 & 2 & 2 \\  18 & 6 & 8^* \\  19 & 2 & 1 \\  20 & 6 & 7 \\  \end{array}  \end{equation}  %div_cont: 4, 4, 2, 8, 3, 4, 4, 6, 2, 8, 2, 6, 4, 4, 4, 9, 2, 4, 4, 8, 2, 8, 2, 6, 6, 4, 2, 10, 3, 6, 4, 6, 2, 8, 4, 8, 4, 4, 2, 12, 2, 4, 6, 7, 4, 8, 2, 6, 4, 8, 2,  ^* $3^2$ was counted as one.  We can observe a potential pattern that evey other $1;2n\in\mathbb{Z}$ string of ones is divisible by $11$, also $1;3n\in\mathbb{Z}$ is divisible by $37$... We also note that if this trend continues there should be only be distinct primes of the form $1;p$, where $p$ must be prime, but not any prime will do. [2,19,23,...] special primes.  Due to the nature of the occurence of divisors, the number of prime factors on $1;n$, should be directly proportional to the number of divisors of $n$!