Benedict Irwin edited 9090+3.tex  over 9 years ago

Commit id: 150f9de9413f420130b3f4cd7b1bd2dce07573f7

deletions | additions      

       

(90;;43)-1& 0 & \\  (90;;44)-1& 0 & \\  (90;;45)-1& 0 & 89×233×1172740043×2294671471×16290676390868631020830767058415390673419786566840260623690267053549 \\  (90;;46)-1& 0 & 79×1150747986191024165707710011507479861910241657077100115074798619102416570771001150747986191 \\  (90;;47)-1& 0 & \\  (90;;48)-1& 0 & \\  (90;;49)-1& 0 & \\  (90;;50)-1& 0 & \\  (90;;51)-1& 0 & \\  (90;;52)-1& 0 & 6983×187171×1076213×64629155095902444263963806439089201090498271510681620879393026187936269908369318103338921 \\  (90;;53)-1& 0 & 19×23×67×310492472110013692718020051603848864684275729734932576559681310526626281945794224219033809525288059391 \\  (90;;54)-1& 0 & 5717×109919×171614779621×8429691225584480874838874594196335279887753287630545047581060320557048152240136895517383 \\  (90;;55)-1& 0 & \\  (90;;56)-1& 0 & \\  (90;;57)-1& 0 & \\  (90;;58)-1& 0 & \\  (90;;59)-1& 0 & \\  (90;;60)-1& 0 & \\  (90;;61)-1& 0 & \\  (90;;62)-1& 0 & \\  (90;;63)-1& 0 & \\  (90;;64)-1& 0 & \\  (90;;65)-1& 0 & \\  (90;;66)-1& 0 & \\  (90;;67)-1& 0 & \\  (90;;68)-1& 0 & \\  (90;;69)-1& 0 & \\  (90;;70)-1& 0 & \\  (90;;71)-1& 0 & 19×86399748109×5537850630280835793385158924798585959711630523655733039869444968470991361168447402811525949960092140267365793582245494756146065959 \\  (90;;72)-1& 0 & \\  (90;;73)-1& 0 & \\  (90;;74)-1& 1 & (90;;74)-1\\  (90;;75)-1& 0 & \\  \hline  \end{array}  \end{equation}  We see that if $n+0=m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $1$. [0th prime?]\\ primeish?]\\  We see that if $n+5=11m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $11$. [5th prime]\\  We see that if $n-8=9m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $19$. [8th prime] \\  Pot_{lly} if $n-9=11m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $23$. [9th prime] \\  We see that if $n-9=14m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $29$. [10th prime] \\  We see that Pot_{lly}  if $n-1=22m\in\mathbb{Z^0}$, $n+14=30m\in\mathbb{Z^0}$,  then $(90;;n)-1$ is divisible by $89$. [24th prime] \\ $43$. [14th prime]\\  Pot_{lly} if $n-2=30m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $61$. [18th prime] \\  Pot_{lly} if $n-20=33m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $67$. [19th prime] \\  Pot_{lly} if $n-7=13m\in\mathbb{Z^0}$, then $(90;;n)-1$ is divisible by $79$. [22nd prime] \\  Pot_{lly} We see that  if $n+14=30m\in\mathbb{Z^0}$, $n-1=22m\in\mathbb{Z^0}$,  then $(90;;n)-1$ is divisible by $43$. [14th prime]\\ $89$. [24th prime]  \\  Try n-10 = 7m 

primes of form $(90;;n)+1$: 2, 3, 9, 15, 26, 33, 146, 320, 1068, 1505 \\  primes of form $(90;;n)-1$: 1, 3, 4, 11, 15, 21, 36, 74  \\ Twin primes of form $(90;;n)\pm1$ 3, 15, ...  Now the second sequence doesn't appear to be recoginsed by OEIS. We require a way of finding the two sequences, then we may identify very large double primes.