Benedict Irwin edited untitled.tex  over 9 years ago

Commit id: 76febf74965efe2303ad1c7549220be9356276b6

deletions | additions      

       

\end{equation}  We compare the fact that $e^x$ is the eigenfunction that produces an eigenvalue of $1$ with application of the $d/dx$ operator, with $x$ being the eigenfunction that produces an eigenvalue of $1$ with application of the $d/d\mathbb{I}$ operator. Another interesting 'derivative' \begin{equation}  \frac{d}{d\mathbb{I}}sin(x) = \frac{1}{\delta}(sin(x) - (x - \delta x - \frac{x^3}{3!} + \frac{3\delta x^3}{3!} = \frac{x^5}{5!} - \frac{5\delta x^5}{5!} -O((1-\delta)x^7))) \\  \frac{d}{d\mathbb{I}}sin(x) = \frac{1}{\delta}(sin(x) - sin(x) -\delta x( -1 + \frac{x^2}{2!}-\frac{x^4}{4!}...) \\  \frac{d}{d\mathbb{I}}sin(x) = xcos(x)  \end{equation}