Benedict Irwin edited section_Describing_the_Generating_Functions__.tex  about 8 years ago

Commit id: 6f11b65307f89998d959fab4147a4d53fd4608b9

deletions | additions      

       

\end{cases}  \end{equation}  This allows us to write \begin{equation}  G_5(z) = \frac{z}{(z-1)^2}\frac{\sum_{k=0}^{\varphi(2\#)} \frac{z}{(z-1)^2}\frac{\sum_{k=0}^{\varphi(p_2\#)}  \chi_5(k)z^k}{\prod_{k=0}^0(1+z^{2^k})} \end{equation}  We may define a function \begin{equation} 

\end{cases}  \end{equation}  This allows us to write \begin{equation}  G_7(z) = \frac{z}{(z-1)^2}\frac{\sum_{k=0}^{\varphi(3\#)} \frac{z}{(z-1)^2}\frac{\sum_{k=0}^{\varphi(p_3\#)}  \chi_7(k)z^k}{\prod_{k=0}^2(1+z^{2^k})} \end{equation}  Similarly we may write \begin{equation} 

\end{cases}  \end{equation}  Which allows us to write \begin{equation}  G_{11}(z) = \frac{z}{(z-1)^2}\frac{\sum_{k=0}^{\varphi(4\#)} \frac{z}{(z-1)^2}\frac{\sum_{k=0}^{\varphi(p_4\#)}  \chi_{11}(k)z^k}{\prod_{k=0}^3(1+z^{2^k})}\frac{1}{(1+z^{16}+z^{32})} \end{equation} we can then speculate that \begin{equation}  G_{13}(z) = \frac{z}{(z-1)^2}\frac{\sum_{k=0}^{\varphi(p_5\#)} \chi_{13}(k)z^k}{1-z-z^{\varphi(p_5\#)}+z^{\varphi(p_5\#)+1}}  \end{equation}  However finding the form of $\chi_{13}(n)$ is the next problem to solve.