Daniel D'Orazio edited untitled.tex  over 9 years ago

Commit id: eeef2865d03d4116e087d295a823f235b710a27b

deletions | additions      

       

\end{equation}  The isothermal equation of state $P=(c^{\rm{iso}}_{s})^2 \rho$ gives us that $c^{\rm{iso}}_{s} = \sqrt{RT}$. So we can write  \begin{equation}  %\label{dP_ad}  \int{\frac{dP}{\rho}} = \frac{(c^{\rm{ad}}_{s})^2 }{\gamma -1} = \frac{\gamma (c^{\rm{iso}}_{s})^2 }{\gamma -1} \quad \rm{Adiabatic} \ \rm{Flow}\label{dP_ad}  \end{equation}  \begin{equation}  \label{dP_iso} %\label{dP_iso}  \int{\frac{dP}{\rho}} = (c^{\rm{iso}}_{s})^2 \ln{\frac{\rho}{\rho_0}} \quad \rm{Isothermal} \ \rm{Flow}  \end{equation}