Daniel D'Orazio edited untitled.tex  over 9 years ago

Commit id: e9399358f3d40c8440adce3952f24dbcda47d1fe

deletions | additions      

       

\begin{equation}  c^{\rm{ad}}_{s} = \sqrt{\frac{dP}{d\rho}} = \sqrt{\gamma \frac{P}{\rho}} = \sqrt{\gamma RT}  \end{equation}  The isothermal equation of state $P=(c^{\rm{iso}}_{s})^2 \rho$ gives us that $c^{\rm{iso}}_{s} = \sqrt{RT$  and \sqrt{RT}$. So we can write  \begin{equation}  \int{\frac{dP}{\rho}} = \frac{(c^{\rm{ad}}_{s})^2 }{\gamma -1} = \frac{\gamma (c^{\rm{iso}}_{s})^2 }{\gamma -1} \quad \rm{Adiabatic} \ \rm{Flow}  \end{equation}