Daniel D'Orazio edited untitled.tex  over 9 years ago

Commit id: 11f07d27f4a3be43b8dec8049c14f5be37e2837b

deletions | additions      

       

\begin{equation}  \left(\mathbf{v} \cdot \nabla \right)\mathbf{v} + \frac{1}{\rho}\nabla P + \nabla \Phi_G -\nu\left[\nabla^2\mathbf{v} + \frac{1}{3}\left(\nabla \cdot \mathbf{v} \right) \right] = 0  \end{equation}  where it is understoond that gravitational potential $\Phi_G$ and the coeficcient of kinematic viscosity $\nu$ are time independent. Now use the idenity $\left(\mathbf{v} \cdot \nabla \right)\mathbf{v} = \frac{1}{2} \nabla\left\mathbf{v} \nabla \left( \mathbf{v}  \cdot \mathbf{v}\right) - \mathbf{v} \times \left( \nabla \times  \mathbf{v}\right)$ Integrate the momentum equation for a steady, nonviscous, flow along a streamline \begin{equation}  \int{\mathbf{ds}\cdot (\rm{momentum equation})}  \end{equation}