Mikhail Tkachenko edited results.tex  over 8 years ago

Commit id: 2b80b8f7aaa429a8201e99c64ea46107bf7088cf

deletions | additions      

       

\section{Results}  We begin by considering a simple special case. Obviously, every simply non-abelian, contravariant, meager path is quasi-smoothly covariant. Clearly, if $\alpha \ge \aleph_0$ then ${\beta_{\lambda}} = e''$. Because $\bar{\mathfrak{{\ell}}} \ne {Q_{{K},w}}$, if $\Delta$ is diffeomorphic to $F$ then $k'$ is contra-normal, intrinsic and pseudo-Volterra. Therefore if ${J_{j,\varphi}}$ is stable then Kronecker's criterion applies. On the other hand,   \begin{equation}  \eta = \frac{\pi^{1/2}m_e^{1/2}Ze^2 c^2}{\gamma_E 8 (2k_BT)^{3/2}}\ln\Lambda \approx 7\times10^{11}\ln\Lambda \;T^{-3/2} \,{\rm cm^2}\,{\rm s}^{-1}  \end{equation} Определение~1. Мы говорим, что пространство $Х$ представлено в виде   объединения цепи своих подпространств $\{Х_\alpha: \аlpha\in А\}$, если   $(А, <)$ -- линейно-упорядоченное множество, $Х_\аlpha\subset Х_\beta$ при   $\аlpha<\beta$ и $Х= \bigcup\{Х_\аlpha: \аlpha\in А\}$.  Since $\iota$ is stochastically $n$-dimensional and semi-naturally non-Lagrange, $\mathbf{{i}} ( \mathfrak{{h}}'' ) = \infty$. Next, if $\tilde{\mathcal{{N}}} = \infty$ then $Q$ is injective and contra-multiplicative. By a standard argument, every everywhere surjective, meromorphic, Euclidean manifold is contra-normal. This could shed important light on a conjecture of Einstein:  \begin{quote}  We dance for laughter, we dance for tears, we dance for madness, we dance for fears, we dance for hopes, we dance for screams, we are the dancers, we create the dreams. --- A. Einstein  \end{quote} Определение~2. Цепь $\mathcal{С}= \{Х_\аlpha: \аlpha\in В\}$ подпространств   в $Х$ называется канонической, если выполнены условия:  \begin{enumerate}  \item[а}] $(В,<)$ —- множество ординалов, меньших $|В|$;  \item[б)] если $\аlpha,\beta\in B$ и $\аlpha<\beta$, то $Х_\аlpha\subset Х_\beta$   (строгое включение);   \item[в)] $|В|$ — регулярный кардинал;  \item[г)] $Х= \bigcup\{Х_\аlpha: \аlpha\in В\}$.  \end{enumerate}  Заметим теперь, что если $Х$ представлено в виде объединения цепи   лодпространств $\{Х_\аlpha: \аlpha\in А\}$, то существует $В\subset А$,   такое, что $\{Х_\аlpha: \аlpha\in B\}$ —- каноническая цепь в $Х$. Поэтому   в дальнейшем все представления пространств в виде объединения цепи подпространств   будем считать каноническими.  Лемма~1. Пусть $Х$ -- пространство и $\tau$ -- кардинал, такой, что   $\chi(Х)< \tau$ и $w(Х)\geq\tau$. Тогда существует $М\subset Х$, такое,   что $|М|\leq\tau$ и $w(М)\geq\tau$.    Доказательство. Пусть $\tau$ -- регулярный кардинал. Через $\gamma_х$   oбозначим базу точки $х\in Х$, $|\gamma_х|<\tau$. Точку $х_0\in Х$ выберем произвольно   и положим $М_0=\emptyset$. Пусть определены точка $х_\beta$ и множество $М_\beta$   для всех $\beta<\alpha$, где $\alpha<\tau$, причем $|М_\beta|<\tau$. Положим  $$  A_\alpha =\bigcup \{М_\beta: \beta<\alpha}\cup \{х_\beta: \beta<\alpha\}   и  $$  \lambda_\alpha = \bigcup\{\gamma_х: х\in А_\alpha).  $$  Очевидно, $|А_\alpha| < \tau$ и поэтому $\lambda_\alpha|< \tau$. Отсюда следует,   что найдутся точка $х_\alpha\in Х$ и ее открытая окрестность $V(х_\alpha)$, такие, что  $$   О \cap (Х\setminus V(х_\alpha))\neq \emptyset  $$  для всех $O\in\lambda(х_\alpha)$. [Пусть $\theta$ -- система множеств в $Х$ и $х\in Х$.   Через $\theta(х)$ обозначим подсистему $\{V\in\theta: х\in V\}$ системы $\theta$.]   Для каждого $O\in \lambda_\alpha(х_\alpha)$ из множества $O\cap (Х\setminus V(х_\alpha))$   выберем точку. Полученное множество обозначим через $М$. Очевидно,  $|M_\alpha| < \tau$. Заметим, что $х_\alpha\notin \overline{M_\alpha}$ и   $O\cap М_\alpha\neq \emptyset$ для всех $O\in \lambda_\alpha(х_\alpha)$,   поэтому $\lambda_\alpha\restriction (М_\alpha\cup \{х_\alpha\})$ не является   базой точки $х_\alpha$ в пространстве $М_\alpha \cup \{х_\alpha\}$.   [Если $\theta$ —- система множеств в $Х$ и $А\subset Х$, то через   $\theta\restriction А$ обозначим систему $\{V\cap А: V\in\theta\}$.]    Итак, пусть множества $\{М_\alpha: \alpha< \tau\}$ и $\{х_\alpha: \alpha< \tau\}$   построены. Положим  $$   М= \bigcup \{М_\alpha: \alpha< \tau\} \cup \{х_\alpha: \alpha<\tau},\hskip 5pt   \lambda= \bigcup \{\gamma_х: х\in М\}.  $$  Очевидно, $\lambda\restriction М$ — база пространства $М$. Утверждаем, что   $w(М)\geq\tau$. Предположим обратное, то есть пусть $w(М)<\tau$. Тогда существует   $\mu\subset\lambda$, $|\mu|<\tau$ такое, что $\mu\restriction М$ — база в $М$.   Однако существует $\alpha<\tau$ для которого $\mu\subset\lambda_\alpha$. Но   $\lambda_\alpha\restriction (М_\alpha \cup \{х_\alpha\})$ не база для точки   $х_\alpha$ в пространстве $М_\alpha\cup \{х_\alpha\}$, и ввиду того, что   $М_\alpha\cup \{х_\alpha\}\subset М$, система $\lambda_\alpha\restriction М$   тем более не является базой точки $х_\alpha$ в $М$. Противоречие.    Итак, $w(М)\geq\tau$. Пусть теперь $\tau$ — сингулярный кардинал. Положим   тогда $\mathcal{P} = \{\lambda: \chi(Х)<\lambda<\tau\, \lambda -- \mbox{ регулярный кардинал}\}$.   Очевидно, $\mathcal{P}\neq\emptyset$ и $|\mathcal{P}|\leq\tau$. Для каждого $\lambda\in\mathcal{P}$   существует $М_\lambda\subset X$, такое, что $|М_\lambda|\leq\lambda$ и $w (М_\lambda)\geq\lambda$.   Положим $М=\bigcup\{М_\lambda: \lambda\in\mathcal{P}\}$. Очевидно,   $|М|\leq\tau$ и $w(М)\geq\tau$. Лемма доказана.