Wendy E. Brown edited Introduction.md  over 8 years ago

Commit id: e1542c89332c22312b0b509645730822da865e79

deletions | additions      

       

These early studies were unavoidably limited by their reliance on culturing to identify microbial species. Culture-independent approaches were eventually implemented, including some small-scale 16S rDNA PCR surveys \cite{14749908},\cite{Moissl_2007} and the Lab-On-a-Chip Application Development\cite{19845447} Portable Test System (LOCAD-PTS), which allows astronauts to test surfaces for lipopolysaccharide (LPS - a marker for Gram negative bacteria). Originally launched in 2006, the capability of the LOCAD-PTS was expanded in 2009 to include an assay for fungi (beta-glucan, a fungal cell wall component) and Gram positive bacteria (lipoteichoic acid, a component of the cell wall of Gram positive bacteria.) Recently, the first large-scale, culture-independent 16S rDNA PCR survey was published using the Roche 454 platform, looking at dust on the ISS \cite{24695826}. We report here on a further effort involving 16S rDNA PCR and sequencing, using the Illumina platform, to examine the microbial communities found on 15 surfaces inside the International Space Station.  The microbial census of ISS surfaces presented here is a component of a larger project (Project MERCCURI) which was undertaken for both scientific reasons as well as for its outreach and education potential. Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on the ISS) is a collaborative effort involved the "microbiology of the Built Environmnet network" (microBEnet), Science Cheerleader, NanoRacks, Space Florida, and Scistarter.com. Other parts of Project MERCCURI include a projecton  studying the growth of cultured microbes on the ISS and a project examining the diversity of microbes on cells phones and shoes from public participants are diverse events around the United States. He we focus solely on the microbial survey of surfaces onboard the ISS. The 15 surfaces sampled on the ISS were chosen by the Project MERCCURI team in an effort to make them analogous to 1) the surfaces sampled for the "Wildlife of Our Homes" project (homes.yourwildlife.org), which asked citizen scientists to swab nine surfaces in their homes, and 2) cell phone and shoe swab samples that were also being collected via Project MERCCURI. The motivation for choosing the sites in this way was both to increase public awareness of the microbiology of the built environment, as well as to begin to compare the microbial ecology of homes on Earth with the only current human home in space. We also present a comparison of the ISS swab results with data from 13 human body sites sampled via the Human Microbiome Project. This comparison was done to example the potential human contribution to the microbial life on the ISS.