Angela M. Zivkovic edited Methods.md  over 9 years ago

Commit id: 8998c905b147be56b64d07ce58569d33984c389f

deletions | additions      

       

#Methods  ##Meal preparation  We conducted a series of experiments consisting of food preparation followed by sample preparation and microbial analysis. Food was purchased and prepared in a normal/average home kitchen by the same individual using typical kitchen cleaning practices including hand washing with non-antibacterial soap between food preparation steps, washing of dishes and cooking instruments with non-antibacterial dish washing detergent, and kitchen clean-up with a combination of anti-bacterial and non-antibacterial cleaning products. Anti-bacterial products had specific anti-bacterial molecules added to them whereas "non-antibacterial" products were simple surfactant-based formulations.  The goal was to simulate a typical home kitchen rather than to artificially introduce sterile practices that would be atypical of how the average American prepares their meals at home. All meals were prepared according to specific recipes (from raw ingredient preparation such as washing and chopping, to cooking and mixing). After food preparation, meals were plated on a clean plate, weighed on a digital scale (model 157W, Escali, Minneapolis, MN), and then transferred to a blender (model 5200, Vita-Mix Corporation, Cleveland, OH) and processed until completely blended (approximately 1-3 minutes). Prepared, ready to eat foods that were purchased outside the home were simply weighed in their original packaging and then transferred to the blender. 4 mL aliquots of the blended meal composite were extracted from the blender, transported on dry ice and then stored at -80°C until analysis. The following analyses were completed using these meal composite samples: 1) total aerobic bacterial plate counts, 2) total anaerobic bacterial plate counts, 3) yeast plate counts, 4) fungal plate counts, and 5) 16S rDNA analysis for microbial ecology.