Matt Pitkin edited Equation_ref_eq_fourier3_is__.tex  over 8 years ago

Commit id: 961556e42fb117b89b814da6ed285a84fd109c7f

deletions | additions      

       

Equation~\ref{eq:fourier3} is potentially \href{http://math.stackexchange.com/a/1470809/95147}{soluble} analytically using incomplete Bessel functions and hypergeometric equations. However, it may be easier to create a lookup table of numerical solutions in $z$ and $\alpha$ space. First, it may also be better to split the integral into the real and imaginary parts to solve each individually. So, we have  \begin{align}  H_k(f) =& =  y_k\left(\frac{\pi}{3}\ddot{f_k}\right)^{-1/3}e^{i\left(\phi_k-\pi f \Delta t + \beta \right)}\Bigg[\int_{0}^{z_2} \right)}&\Bigg[\int_{0}^{z_2}  \cos{\left(z^3 + \alpha z\right)} {\rm d}z + i \int_{0}^{z_2} \sin{\left(z^3 + \alpha z\right)} {\rm d}z - \nonumber \\ &\int_{0}^{z_1} \cos{\left(z^3 + \alpha z\right)} {\rm d}z -  i\int_{0}^{z_1} \sin{\left(z^3 + \alpha z\right)} {\rm d}z \Bigg].  \end{align}