Matt Pitkin edited untitled.tex  over 8 years ago

Commit id: 0920d3f38f9bfb76204bfd85520a405ccd609bad

deletions | additions      

       

where $t_k$ is the central time of the Fourier transformed data, $\Delta t$ is the length of the data, and  \begin{align}  \dot{f}_{\rm start} =& \ddot{\delta}(t_{\rm s})\left( \sum_{l=0} \frac{f^{(l)}}{l!}\left(t_{\rm s} - t_0 +\delta(t_{\rm s}) \right)^l \right) \nonumber \\  &+ (1+\dot{\delta}(t_{\rm s}))^2 \left( \sum_{l=0} \frac{f^{(l)}}{(l-1)!} \left(t_{\rm s} - t_0 +\delta(t_{\rm s}) \right)^{l-1}\right), \\  \dot{f}_{\rm end} =& \ddot{\delta}(t_{\rm e})\left( \sum_{l=0} \frac{f^{(l)}}{l!}\left(t_{\rm e} - t_0 +\delta(t_{\rm e}) \right)^l \right) \nonumber \\  &+ (1+\dot{\delta}(t_{\rm e}))^2 \left( \sum_{l=0} \frac{f^{(l)}}{(l-1)!} \left(t_{\rm e} - t_0 +\delta(t_{\rm e}) \right)^{l-1}\right),  \end{align} where $t_{\rm s} = t_k - \Delta t/2$ and $t_{\rm e} = t_k + \Delta t/2$.