srodney reformatting for NatAstro (again)  over 6 years ago

Commit id: 48e4b1d4e10ed2ce83c769e852f28ead111274a0

deletions | additions      

       

#Generate a pdf file using a Nature latex style file  NATUREFILE=spock_arxiv NATUREFILE=spock_natureastronomy_finalsubmission  nature:   pdflatex $(NATUREFILE).tex  bibtex $(NATUREFILE)  pdflatex $(NATUREFILE).tex  pdflatex $(NATUREFILE).tex  open $(NATUREFILE).pdf  NATUREFILE=spock_arxiv  natureupdate:   pdflatex $(NATUREFILE).tex  open $(NATUREFILE).pdf  ARXIVFILE=spock_arxiv  arxiv: nature pdflatex $(ARXIVFILE).tex  bibtex $(ARXIVFILE)  pdflatex $(ARXIVFILE).tex  pdflatex $(ARXIVFILE).tex  open $(ARXIVFILE).pdf  arxivupdate:   pdflatex $(ARXIVFILE).tex  open $(ARXIVFILE).pdf  arxivupdate: natureupdate  #Generate a pdf file using a modified python script from et_eq  local:            

%\documentclass{nature}  \documentclass{article}  %\bibliographystyle{naturemag}  %\usepackage{natbib}  \usepackage{cite}  \usepackage{graphicx}  \usepackage{amsfonts,amsmath,amssymb}  \usepackage{hyperref} % url text formatting  \usepackage{deluxetable}  \usepackage{xspace} % def commands that appear not to eat a space  \usepackage{journalnames} % aastex-style Astrophysics journal abbrev.  \usepackage{multicol,caption} % for mixing single- and two-column text  \usepackage{textcomp}  \usepackage[utf8]{inputenc}  \usepackage[english]{babel}  %% make citations be superscripts, taken from citesupernumber.sty  %\def\@cite#1#2{$^{\mbox{\scriptsize #1\if@tempswa , #2\fi}}$}  \newcommand{\citeref}[1]{[Ref.~{\citenum{#1}}]}  \providecommand\citealt{\cite}  \providecommand\citep{\cite}  \providecommand\citet{\cite}  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % AUTHOR-DEFINED MACROS  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % Cosmology:  \def\Om{\ensuremath{\Omega_{\rm m}}\xspace}  \def\Ot{\ensuremath{\Omega_{\rm tot}}\xspace}  \def\Ob{\ensuremath{\Omega_{\rm b}}\xspace}  \def\OL{\ensuremath{\Omega_{\Lambda}}\xspace}  \def\Ok{\ensuremath{\Omega_{\rm k}}\xspace}  \def\om{\ensuremath{\omega_{\rm m}}\xspace}  \def\ob{\ensuremath{\omega_{\rm b}}\xspace}  \def\wo{\ensuremath{w_0}\xspace}  \def\wa{\ensuremath{w_{\rm a}}\xspace}  \def\lcdm{$\Lambda$CDM\xspace}  \def\LCDM{$\Lambda$CDM\xspace}  \def\wcdm{$w$CDM\xspace}  \def\Ho{\ensuremath{H_0}\xspace}  \def\DA{\ensuremath{D_A}\xspace}  \def\DL{\ensuremath{D_L}\xspace}  % Astronomy:  \def\arcsec{\ensuremath{^{\prime\prime}}\xspace}   \def\farcm{\mbox{\ensuremath{.\mkern-4mu^\prime}}}  \def\farcs{\mbox{\ensuremath{.\!\!^{\prime\prime}}}}  \def\fdg{\mbox{\ensuremath{.\!\!^\circ}}}  \def\arcdeg{\ensuremath{^{\circ}}\xspace}  \def\hgpcq{\mbox{$h^{-3}$Gpc$^3$}\xspace}  \def\hmpcq{\mbox{$h^{-3}$Mpc$^3$}\xspace}  \def\perhmpcq{\mbox{$h^{3}$Mpc$^{-3}$}\xspace}  \def\hmpc{\mbox{$h^{-1}$Mpc}\xspace}  \def\hmpci{\mbox{$h$\,Mpc$^{-1}$}\xspace}  \def\mpc{\mbox{Mpc}\xspace}  \def\mpci{\mbox{Mpc$^{-1}$}\xspace}  \def\mpcq{\mbox{Mpc$^{-3}$}\xspace}  \def\Msun{\mbox{M$_{\odot}$}\xspace}  \def\Rsun{\mbox{R$_{\odot}$}\xspace}  \def\Av{\mbox{$A_V$}\xspace}  \def\Rv{\mbox{$R_V$}\xspace}  \def\Ha{\mbox{H$\alpha$}\xspace}  \newcommand\ionline[2]{#1{\scshape{#2}}}  \newcommand\forbidden[2]{[#1{\scshape{#2}}]}  \newcommand{\isotope}[2]{${}^{#1}$#2}  % Supernovae :   \def\CCSN{CC\,SN\xspace}  \def\CCSNe{CC\,SNe\xspace}  \def\SNIa{SN\,Ia\xspace}  \def\SNeIa{SNe\,Ia\xspace}  \def\Mch{\mbox{M$_{\rm Ch}$}\xspace}  \def\NiFiftySix{\ensuremath{^{56}\mbox{Ni}}\xspace}  \def\CoFiftySix{\ensuremath{^{56}\mbox{Co}}\xspace}  \def\FeFiftySix{\ensuremath{^{56}\mbox{Fe}}\xspace}  \def\dmfifteen{\ensuremath{\Delta\mbox{m}_{15}}\xspace}  \def\deltamfifteen{\ensuremath{\Delta\mbox{m}_{15}}\xspace}  % Other explosions:  \def\etacar{\ensuremath{\eta~\mbox{Car}}\xspace}  \def\etaCar{\ensuremath{\eta~\mbox{Car}}\xspace}  \def\m31n{M31N\,2008-12a\xspace}  \def\M31N{M31N\,2008-12a\xspace}  % Missions:  \def\HST{{\it HST}\xspace}  \def\Hubble{{\it Hubble}\xspace}  \def\Hubbles{{\it Hubble's}\xspace}  \def\Spitzer{{\it Spitzer}\xspace}  \def\Chandra{{\it Chandra}\xspace}  \def\Herschel{{\it Herschel}\xspace}  \def\XMM{{\it XMM}\xspace}  \def\Swift{{\it Swift}\xspace}  % Specific to this paper:   \def\spock{HFF14Spo\xspace}  \def\spockone{HFF14Spo-NW\xspace}  \def\spocktwo{HFF14Spo-SE\xspace}  \def\spockNW{HFF14Spo-NW\xspace}  \def\spockSE{HFF14Spo-SE\xspace}  \def\macs0416{MACS0416\xspace}  \def\MACS0416{MACS0416\xspace}  \def\fullmacs0416{MACS\,J0416.1-2403\xspace}  \def\Lpk{\ensuremath{L_{\rm pk}}\xspace}  \def\t2{\ensuremath{t_{2}}\xspace}  \def\trec{\ensuremath{t_{\rm rec}}\xspace}  \def\microjansky{\ensuremath{\mu Jy}\xspace}  % --------------------------------------------------  % Author list   % use the \affilref and \affilreftxt commands   % to get an author list and footnoted institutional  % addresses that count themselves without duplicating  % --------------------------------------------------  \newcommand\affiliation[1]{%  \move@AU\move@AF%  \begingroup%  \@affiliation{\hspace*{2mm}#1}%  }%  \let\affil=\affiliation  \def\affil@mark#1{\textsuperscript{#1}}  \def\affile@mark@pad{0.2em}  \def\altaffilmark#1{\affil@mark{#1}}  %\def\altaffiltext#1#2{%  %\item{#1  %\global\alt@affil@toks\expandafter{\the\alt@affil@toks\\\hspace*{3mm}\affil@mark{#1}\hspace*{\affile@mark@pad}#2}%  %\global\alt@affil@toks@count\expandafter{\the\alt@affil@toks@count\stepcounter{front@matter@foot@note}}%  %}  \newcounter{affilct}  \setcounter{affilct}{0}  % --------------------------------------------------  % \affilref{refcode}  % Use this command inside each \altaffilmark{} instance.  % It checks if the affiliation has already been used, and generates  % a new affiliation reference number only if needed.  % The user-defined refcode value will then be used by \affilreftxt  % to set the same index number in the author list at the top and   % the footnoted list of institutional addresses.   \makeatletter  \newcommand{\affilref}[1]{%  \@ifundefined{c@#1}%  {\newcounter{#1}%  \setcounter{#1}{\theaffilct}%  \refstepcounter{affilct}%  \label{#1}%  }{}%  \ref{#1}%  }  \makeatother  % --------------------------------------------------  % \affilreftxt{refcode}{address} :   % Use this command after each author definition   % to generate the footnote text containing one institutional  % address for that author.   % It checks if the address has already been used, and generates  % a new affiliation footnote with text only if needed.  \makeatletter  \newcommand*\affilreftxt[2]{%  \@ifundefined{c@#1txt}  {\newcounter{#1txt}%  \setcounter{#1txt}{1}  \altaffiltext{\ref{#1}}{#2}  }{  }  }  \makeatother  % --------------------------------------------------  % --------------------------------------------------  % Institutions  % define a command for each institution's mailing address  % --------------------------------------------------  \newcommand{\CorrespondingAuthor}{Corresponding Author}  \newcommand{\HubbleFellow}{Hubble Fellow}  \newcommand{\Packard}{Packard Fellow}  \newcommand{\CalTech}{Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 249-17, Pasadena, CA 91125, USA}  \newcommand{\BenGurion}{Ben-Gurion University of the Negev P.O.B. 653 Beer-Sheva 8410501, Israel}  \newcommand{\Cantabria}{IFCA, Instituto de F\'isica de Cantabria (UC-CSIC), Av. de Los Castros s/n, 39005 Santander, Spain}  \newcommand{\IFCA}{\Cantabria}  \newcommand{\JHU}{Department of Physics and Astronomy, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA}  \newcommand{\Michigan}{Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109, USA}  \newcommand{\UCSC}{Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064, USA}  \newcommand{\UCDavis}{University of California Davis, 1 Shields Avenue, Davis, CA 95616}  \newcommand{\UCLA}{Department of Physics and Astronomy, University of California, Los Angeles, CA 90095}  \newcommand{\USC}{Department of Physics and Astronomy, University of South Carolina, 712 Main St., Columbia, SC 29208, USA}  \newcommand{\TokyoRCEU}{Research Center for the Early Universe, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan}  \newcommand{\TokyoPhys}{Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan}  \newcommand{\TokyoIPMU}{Kavli Institute for the Physics and Mathematics of the Universe (Kavli IPMU, WPI), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583, Japan}  \newcommand{\TokyoAstro}{Department of Astronomy, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan}  \newcommand{\DARK}{Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark}   \newcommand{\Milan}{Dipartimento di Fisica, Universit\`a degli Studi di Milano, via Celoria 16, I-20133 Milano, Italy}  \newcommand{\INFN}{INFN, Sezione di Bologna, Viale Berti Pichat 6/2, I-40127 Bologna, Italy}  \newcommand{\EHU}{Fisika Teorikoa, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU}  \newcommand{\Basque}{IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 48008 Bilbao, Spain}  \newcommand{\Berkeley}{Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA}  \newcommand{\STScI}{Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA}  \newcommand{\Ferrara}{Dipartimento di Fisica e Scienze della Terra, Universit\`{a} degli Studi di Ferrara, via Saragat 1, I-44122, Ferrara, Italy}  \newcommand{\INAF}{INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy}  \newcommand{\UCSB}{Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA}  \newcommand{\SantaBarbara}{\UCSB}  \newcommand{\Kapteyn}{Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, the Netherlands}  \newcommand{\WKU}{Department of Physics, Western Kentucky University, Bowling Green, KY 42101, USA}  \newcommand{\IAP}{Institut d’Astrophysique de Paris, UMR7095 CNRS-Universit\'{e} Pierre et Marie Curie, 98bis bd Arago, F-75014 Paris, France}  \newcommand{\ASIAA}{Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan}  \newcommand{\TokyoKashiwa}{Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa, Chiba 277-8582, Japan}  \newcommand{\Munich}{University Observatory Munich, Scheinerstrasse 1, D-81679 Munich, Germany}   \newcommand{\KICPStanford}{Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA}  \newcommand{\Andalucia}{Instituto de Astrof\'isica de Andaluc\'ia (CSIC), E-18080 Granada, Spain}  \newcommand{\SaoPaulo}{Instituto de Astronomia, Geof\'isica e Ci\^encias Atmosf\'ericas, Universidade de S\~ao Paulo, Cidade Universit\'aria, 05508-090, S\~ao Paulo, Brazil}  \newcommand{\AMNH}{Department of Astrophysics, American Museum of Natural History, Central Park West and 79th Street, New York, NY 10024, USA}  \newcommand{\NYU}{Center for Cosmology and Particle Physics, New York University, New York, NY 10003, USA}  \newcommand{\Arizona}{Department of Astronomy, University of Arizona, Tucson, AZ 85721, USA}  \newcommand{\Rutgers}{Department of Physics and Astronomy, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA}  \newcommand{\NOAO}{National Optical Astronomical Observatory, Tucson, AZ 85719, USA}  \newcommand{\LCOGT}{Las Cumbres Observatory Global Telescope Network, 6740 Cortona Dr., Suite 102, Goleta, California 93117, USA}  \newcommand{\IllinoisAstro}{Astronomy Department, University of Illinois at Urbana-Champaign, 1002 W.\ Green Street, Urbana, IL 61801, USA }  \newcommand{\IllinoisPhysics}{Department of Physics, University of Illinois at Urbana-Champaign, 1110 W.\ Green Street, Urbana, IL 61801, USA }  \newcommand{\AIP}{Leibniz-Institut f\"ur Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482 Potsdam, Germany}  \newcommand{\CEA}{Centre for Extragalactic Astronomy, Department of Physics, Durham University, Durham DH1 3LE, U.K.}  \newcommand{\ICC}{Institute for Computational Cosmology, Durham University, South Road, Durham DH1 3LE, U.K.}  \newcommand{\ACRU}{Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Durban 4041, South Africa}  \newcommand{\MPIA}{Max-Planck-Institut f{\"u}r Astrophysik, Karl-Schwarzschild-Str.~1, 85748 Garching, Germany}  \newcommand{\Garching}{Physik-Department, Technische Universit\"at M\"unchen, James-Franck-Stra\ss{}e~1, 85748 Garching, Germany}  \newcommand{\Riverside}{Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA}  \newcommand{\UCRiverside}{\Riverside}  \newcommand{\CfA}{Harvard/Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA}  \newcommand{\Minnesota}{School of Physics and Astronomy, University of Minnesota, 116 Church Street SE, Minneapolis, MN 55455, USA}  \newcommand{\Lyon}{Universit\'e Lyon, Univ Lyon1, Ens de Lyon, CNRS,  Centre de Recherche Astrophysique de Lyon UMR5574, F-69230,  Saint-Genis-Laval, France}  \bibliographystyle{naturemag}  \begin{document}  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % Title, author and affiliations  \title{Two Peculiar Fast Transients in a Strongly Lensed Host Galaxy}  \maketitle  \author{  S.~A.~Rodney\altaffilmark{*,\affilref{USC}},  I.~Balestra\altaffilmark{\affilref{Munich}},  M.~Brada\v{c}\altaffilmark{\affilref{UCDavis}},  G.~Brammer\altaffilmark{\affilref{STScI}},  T.~Broadhurst\altaffilmark{\affilref{EHU},\affilref{Basque}},  G.~B.~Caminha\altaffilmark{\affilref{Ferrara}},  G.~Chiriv{\`i}\altaffilmark{\affilref{MPIA}},  J.~M.~Diego\altaffilmark{\affilref{IFCA}},  A.~V.~Filippenko\altaffilmark{\affilref{Berkeley}},  R.~J.~Foley\altaffilmark{\affilref{UCSC}},  O.~Graur\altaffilmark{\affilref{NYU},\affilref{AMNH},\affilref{CfA}},  C.~Grillo\altaffilmark{\affilref{Milan},\affilref{DARK}},  S.~Hemmati\altaffilmark{\affilref{CalTech}},  J.~Hjorth\altaffilmark{\affilref{DARK}},  A.~Hoag\altaffilmark{\affilref{UCDavis}},  M.~Jauzac\altaffilmark{\affilref{CEA},\affilref{ICC},\affilref{ACRU}},  S.~W.~Jha\altaffilmark{\affilref{Rutgers}},  R.~Kawamata\altaffilmark{\affilref{TokyoAstro}},  P.~L.~Kelly\altaffilmark{\affilref{Berkeley}},  C.~McCully\altaffilmark{\affilref{LCOGT},\affilref{UCSB}},  B.~Mobasher\altaffilmark{\affilref{UCRiverside}},  A.~Molino\altaffilmark{\affilref{SaoPaulo},\affilref{Andalucia}},  M.~Oguri\altaffilmark{\affilref{TokyoRCEU},\affilref{TokyoPhys},\affilref{TokyoIPMU}},  J.~Richard\altaffilmark{\affilref{Lyon}},  A.~G.~Riess\altaffilmark{\affilref{JHU},\affilref{STScI}},  P.~Rosati\altaffilmark{\affilref{Ferrara}},  K.~B.~Schmidt\altaffilmark{\affilref{UCSB},\affilref{AIP}},  J.~Selsing\altaffilmark{\affilref{DARK}},  K.~Sharon\altaffilmark{\affilref{Michigan}},  L.-G.~Strolger\altaffilmark{\affilref{STScI}},  S.~H.~Suyu\altaffilmark{\affilref{MPIA},\affilref{ASIAA},\affilref{Garching}},  T.~Treu\altaffilmark{\affilref{UCLA},\affilref{Packard}},  B.~J.~Weiner\altaffilmark{\affilref{Arizona}},  L.~L.~R.~Williams\altaffilmark{\affilref{Minnesota}} \&  A.~Zitrin\altaffilmark{\affilref{BenGurion}}  }  *Corresponding author  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % ``Abstract'' : boldface first paragraph  \bigskip  {\bf  A massive galaxy cluster can serve as a magnifying glass for distant  stellar populations, with strong gravitational lensing exposing details  in the lensed background galaxies that would otherwise be undetectable.  The \fullmacs0416 cluster (hereafter \macs0416) is one of the most  efficient lenses in the sky, and in 2014 it was observed with high-cadence  imaging from the Hubble Space Telescope (\HST). Here we describe two  unusual transient events that appeared behind \macs0416 in a strongly lensed galaxy at redshift  $z=1.0054\pm0.0002$. These transients---designated  \spockone and \spocktwo and collectively nicknamed ``Spock''---were  faster and fainter than any supernova (SN), but significantly more luminous  than a classical nova. They reached peak luminosities of $\sim10^{41}$  erg s$^{-1}$ ($M_{AB}<-14$ mag) in $\lesssim$5 rest-frame days, then faded  below detectability in roughly the same time span. Models of the  cluster lens suggest that these events may be {\it spatially}  coincident at the source plane, but are most likely not {\it  temporally} coincident. We find that \spock can be explained as a  luminous blue variable (LBV), a recurrent nova (RN), or a pair of stellar  microlensing events. To distinguish between these hypotheses will  require a clarification of the positions of nearby critical curves,  along with high-cadence monitoring of the field that could detect new  transient episodes in the host galaxy.}  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % BEGIN MAIN TEXT  % Introduction  When a star explodes or a relativistic jet erupts from near the edge  of a black hole, the event can be visible across many billions of  light-years. Such extremely luminous astrophysical transients as  supernovae (SNe), gamma-ray bursts, and quasars are powerful tools for  probing cosmic history and sampling the matter and energy content of  the universe. Less energetic transients generated by the tumultuous  atmospheres of massive stars or the interactions of close stellar  binaries are also very valuable for understanding stellar evolution  and the physical processes that lead to stellar explosions. However,  the lower luminosity of such events makes them accessible only in  the local universe, and consequently our census of peculiar transients  at the stellar scale is still highly incomplete.  Although recent surveys are beginning to discover progressively more   categories of rapidly changing optical  transients\cite{Kasliwal:2011a,Drout:2014}, most programs remain  largely insensitive to transients with peak brightness and timescales  comparable to the \spock events\cite{Berger:2013b}. Future wide-field  observatories such as the Large Synoptic Survey  Telescope\cite{Tyson:2002} will be much more efficient at discovering  such transients, and can be expected to reveal many new categories of  astrophysical transients.  As shown in Figure~\ref{fig:SpockDetectionImages}, the \spock events  appeared in \HST imaging collected as part of  the Hubble Frontier Fields (HFF) survey\cite{Lotz:2017}, a multi-cycle  program for deep imaging of 6 massive galaxy clusters and associated  ``blank sky'' fields observed in parallel. \HST is not an efficient  wide-field survey telescope, and the HFF survey was not designed with  the discovery of peculiar extragalactic transients as a core  objective. However, the HFF program has unintentionally opened an  effective window of discovery for such events. Very faint sources at  relatively high redshift ($z\gtrsim1$) in these fields are made  detectable by the substantial gravitational lensing magnification from  the foreground galaxy clusters. Very rapidly evolving sources are  also more likely to be found, owing to the necessity of a rapid cadence  for repeat imaging in the HFF program.  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % RESULTS   \section{Results}\label{sec:Results}  To evaluate the impact of gravitational lensing from the \MACS0416  cluster on the observed light curves and the timing of these two  events, we use seven independently constructed cluster mass models.  These models indicate that the gravitational time delay between the  \spockone location and the \spocktwo location is $<$60 days  (Table~\ref{tab:LensModelPredictions}). This falls far short of the  observed 223 day span between the two events, suggesting that  \spocktwo is not a time-delayed image of the \spockone event. As  shown in Figure~\ref{fig:SpockDelayPredictions}, \spockone and  \spocktwo are inconsistent with these predicted time delays if one  assumes that they are delayed images of a single event. However, if  these were independent events, then a time delay on the order of tens  of days between image 11.1 and 11.2 could have resulted in  time-delayed events that were missed by the \HST imaging of this  field.  The models also predict absolute magnification values between about  $\mu=10$ and $\mu=200$ for both events. This wide range is due  primarily to the close proximity of the lensing critical curve (the  region of theoretically infinite magnification) for sources at $z=1$.  The lensing configuration consistently adopted for this cluster  assumes that the arc comprises two mirror images of the host galaxy  (labeled 11.1 and 11.2 in  Figure~\ref{fig:SpockDetectionImages})\cite{Zitrin:2013a, Jauzac:2014,  Johnson:2014, Richard:2014, Diego:2015a, Grillo:2015, Hoag:2016,  Sebesta:2016, Caminha:2017}. This implies that a single critical  curve passes roughly midway between the two \spock locations. The  location of the critical curve varies significantly among the models  (Figure~\ref{fig:SpockCriticalCurves}), and is sensitive to many  parameters that are poorly constrained. We find that it is possible to  make reasonable adjustments to the lens model parameters so that the  critical curve does not bisect the \spock host arc, but instead  intersects both of the \spock locations (see Supplementary  Note~\ref{sec:LensModelVariations}). Such lensing configurations can  qualitatively reproduce the observed morphology of the \spock host  galaxy, but they are disfavored by a purely quantitative assessment of  the positional strong-lensing constraints.  \subsection{Ruling Out Common Astrophysical Transients.}  There are several categories of astrophysical transients that can be  rejected based solely on characteristics of the \spockone and  \spocktwo light curves, shown in Figure~\ref{fig:LightCurves}. Neither  of the \spock events is {\it periodic}, as expected for stellar  pulsations such as Cepheids, RR Lyrae, or Mira variables. Stellar  flares can produce rapid optical transient phenomena, but the total  energy released by even the most extreme stellar  flare\cite{Karoff:2016} falls far short of the observed energy release  from the \spock transients. We can also rule out active galactic  nuclei (AGN), which are disfavored by the quiescence of the \spock  sources between the two observed episodes and the absence of any of  the broad emission lines that are often observed in AGN.  Additionally, no x-ray emitting point source was detected in 7 epochs  from 2009 to 2014, including \Chandra X-ray Space Telescope imaging  that was coeval with the peak of infrared emission from \spocktwo.  Dynamically induced stellar collisions or close interactions in a  dense stellar cluster\citep{Fregeau:2004} could in principle produce a  series of optical transients. Similarly, the collision of a jovian  planet with a main sequence star\cite{Metzger:2012,Yamazaki:2017} or a  terrestrial planet with a white dwarf star\cite{Di-Stefano:2015} could  generate an optical transient with a peak luminosity comparable to  that observed for the \spock events, although it is unclear whether  the UV/optical emission could match the observed \spock light curves.  These scenarios warrant further scrutiny, so that predictions of the  light curve shape and anticipated rates can be more rigorously  compared to the \spock observations.  Many types of stellar explosions can generate isolated transient  events, and a useful starting point for classification of such objects  is to examine their position in the phase space of peak luminosity  (\Lpk) versus decline time\cite{Kulkarni:2007}.  Figure~\ref{fig:PeakLuminosityDeclineTime} shows our two-dimensional  constraints on \Lpk and the decline timescale \t2 (the time over which  the transient declines by 2 mag) for the \spock events,  accounting for the range of lensing magnifications ($10<\mu<200$)  derived from the cluster lens models. The \spockone and \spocktwo  events are largely consistent with each other, and if both events are  representative of a single system (or a homogeneous class) then the  most likely peak luminosity and decline time (the region with the most  overlap) would be $L_{\rm pk}\approx10^{41}$ erg s$^{-1}$ and $t_2\approx1$  day.  The relatively low peak luminosities and the very rapid rise and fall  of both \spock light curves are incompatible with all categories of  stellar explosions for which a significant sample of observed events  exists. This includes the common Type Ia SNe and core-collapse SNe,  as well as the less well-understood classes of superluminous  SNe\cite{Gal-Yam:2012}, Type Iax SNe\citep{Foley:2013a}, fast optical  transients\cite{Drout:2014}, Ca-rich SNe\cite{Kasliwal:2012}, and  luminous red novae\cite{Kulkarni:2007}.   The SN-like transients that come closest to matching the observed  light curves of the two \spock events are the ``kilonova'' class and  the ``.Ia'' class. Kilonovae are a category of optical/near-infrared  transients that may be generated by the merger of a neutron star (NS)  binary\cite{Li:1998, Tanvir:2013, Jin:2016}. The .Ia class is  produced by He shell explosions that are expected to arise from AM  Canum Venaticorum (AM CVn) binary star systems undergoing He mass  transfer onto a white dwarf primary star\cite{Bildsten:2007}. The  \spock light curves exhibited a slower rise time than is expected for  a kilonova event\cite{Barnes:2013, Kasen:2015}, and a faster decline  time than is anticipated for a .Ia event\cite{Shen:2010}.  Another problem for all of these catastrophic stellar explosion models  is that they cannot explain the appearance of {\it repeated} transient  events. The kilonova progenitor systems are completely disrupted at  explosion, as is the case for all normal SN explosions. For .Ia  events, even if an AM CVn system could produce repeated He shell  flashes of similar luminosity, the period of recurrence would be  $\sim10^5$ yr, making these effectively non-recurrent sources. Models  invoking a stellar merger or the collision of a planet with its parent  star have a similar difficulty. In these cases the star may survive  the encounter, but the rarity of these collision events makes it  highly unlikely to detect two such transients from the same galaxy in  a single year.  Although the two events were most likely not {\it temporally}  coincident, all of our lens models indicate that it is entirely  plausible for the two \spock events to be {\it spatially} coincident:  a single location at the source plane can be mapped to both \spock  locations to within the positional accuracy of the model  reconstructions ($\sim$0.6\arcsec in the lens plane). This is  supported by the fact that the host-galaxy colors and spectral indices  at each \spock location are indistinguishable within the uncertainties  (see Supplementary Figure~\ref{fig:HostProperties} and Supplementary  Table~\ref{tab:HostProperties}). Thus, to accommodate all of the  observations of the \spock events with a single astrophysical source,  we turn to two categories of stellar explosion that are sporadically  recurrent: luminous blue variables (LBVs) and recurrent novae (RNe).  \subsection{Luminous Blue Variable.}  The transient sources categorized as LBVs are the result of eruptions  or explosive episodes from massive stars ($>10$ \Msun). The class is  exemplified by examples such as P Cygni, $\eta$ Carinae (\etaCar), and  S Doradus\cite{Smith:2011b, Kochanek:2012}. Although most giant LBV  eruptions have been observed to last much longer than the \spock  events\cite{Smith:2011b}, some LBVs have exhibited repeated rapid  outbursts that are broadly consistent with the very fast \spock light  curves (see Supplementary  Figure~\ref{fig:LBVLightCurveComparison}). Because of this common  stochastic variability, the LBV hypothesis does not have any trouble  accounting for the \spock events as two separate episodes.  Two well-studied LBVs that provide a plausible match to the observed  \spock events are ``SN 2009ip''\cite{Maza:2009} and  NGC3432-LBV1\cite{Pastorello:2010}. Both exhibited multiple brief  transient episodes over a span of months to years. Unfortunately,  for these outbursts we have only upper limits on the decline  timescale, $t_2$, owing to the relatively sparse photometric sampling.  Recent studies have shown that SN 2009ip-like LBV transients have remarkably  similar light curves, leading up to a final terminal SN  explosion\cite{Kilpatrick:2017, Pastorello:2017}.  Figure~\ref{fig:PeakLuminosityDeclineTime}b shows that both \spock  events are consistent with the observed luminosities and decline times  of these fast and bright LBV outbursts -- though the \spock events  would be among the most rapid and most luminous LBV eruptions ever  seen.  In addition to those relatively short and very bright giant eruptions,  most LBVs also commonly exhibit a slower underlying variability. P  Cygni and \etaCar, for example, slowly rose and fell in brightness by  $\sim$1 to 2 mag over a timespan of several years before and after  their historic giant eruptions. Such variation has not been detected  at the \spock locations. Nevertheless, given the broad  range of light-curve behaviors seen in LBV events, we cannot reject  this class as a possible explanation for the \spock system.  The total radiated energy of the \spock events is in the range  $10^{44}  within the range of plausible values for a major LBV outburst. From  this measurement we can derive constraints on the luminosity of the  progenitor star, by assuming that the energy released is generated  slowly in the stellar interior and is in some way ``bottled up'' by  the stellar envelope, before being released in a rapid mass ejection  (see Methods). With this approach we a quiescent luminosity of  $L_{\rm qui}\approx10^{39.5}$~erg~s$^{-1}$ ($M_V\approx-10$ mag). This value is  fully consistent with the expected range for LBV progenitor stars  (e.g., \etacar has $M_V\approx-12$ mag and the faintest known LBV progenitors  such as SN 2010dn have $M_V\approx-6$ mag).  \subsection{Recurrent Nova.}\label{sec:RNe}  Novae occur in binary systems in which a white dwarf star accretes  matter from a less massive companion, leading to a burst of nuclear  fusion in the accreted surface layer that causes the white dwarf to  brighten by several orders of magnitude, but does not completely  disrupt the star. The mass transfer from the companion to the white  dwarf may restart after the explosion, so the cycle may begin again  and repeat after a period of months or years. When this recurrence  cycle is directly observed, the object is classified as a recurrent  nova (RN).  The light curves of many RN systems in the Milky Way are similar in  shape to the \spock episodes, exhibiting a sharp rise ($<10$ days in  the rest-frame) and a similarly rapid decline (see Supplementary  Information and Supplementary  Figure~\ref{fig:RecurrentNovaLightCurveComparison}). This is  reflected in Figure~\ref{fig:PeakLuminosityDeclineTime}, where novae  are represented by a grey band that traces the empirical constraints  on the maximum magnitude vs.\ rate of decline (MMRD) relation for  classical novae\cite{DellaValle:1995, Downes:2000}.  The RN model can provide a natural explanation for having two separate  explosions that are coincident in space but not in time. However, the  recurrence timescale for \spock in the rest frame is $120\pm30$ days,  which would be a singularly rapid recurrence period for a RN system.  The RNe in our own Galaxy have recurrence timescales of 10--98  years\cite{Schaefer:2010}. The fastest measured recurrence timescale  belongs to M31N 2008-12a, which has exhibited a new outburst every  year from 2008 through 2016\cite{Tang:2014, Darnley:2016}  Although this M31 record-holder demonstrates that very rapid  recurrence is possible, classifying \spock as a RN would still require  a very extreme mass-transfer rate to accommodate the $<1$ year  recurrence.  Another major concern with the RN hypothesis is that the two \spock  events are substantially brighter than all known novae---perhaps by as  much as 2 orders of magnitude. This is exacerbated by the  observational and theoretical evidence indicating that  rapid-recurrence novae have less energetic eruptions\cite{Yaron:2005}  (see Supplementary Information and Supplementary Figure  \ref{fig:RecurrentNovaRecurrenceComparison}). Although the RN model is  not strictly ruled out, we can deduce that if the \spock transients  are caused by a single RN system, then that progenitor system would be  among the most extreme white dwarf binary systems yet known.  \subsection{Microlensing.}\label{sec:MicroLensing}  In the presence of strong gravitational lensing it is possible to  generate a transient event from lensing effects alone. In this case  the background source has a steady luminosity but the relative motion  of the source, lens, and observer causes the magnification of that  source (and therefore the apparent brightness) to change rapidly with  time. An isolated strong lensing event with a rapid timescale can be  generated when a background star crosses over a lensing caustic (the  mapping of the critical curve back on to the source plane). In the  case of a star crossing the caustic of a smooth lensing potential, the  amplification of the source flux would increase (decrease) with a  characteristic $t^{-1/2}$ profile as it moves toward (away from) the  caustic. This slowly evolving light curve then transitions to a very  sharp decline (rise) when the star has moved to the other side of the  caustic\cite{Schneider:1986, MiraldaEscude:1991}. With a more complex  lens comprising many compact objects, the light curve would exhibit a  superposition of many such sharp peaks\cite{Lewis:1993, Diego:2017}.  The peculiar transient MACS J1149 LS1, observed behind the Hubble  Frontier Fields cluster MACS J1149.6+2223, has been proposed as the  first observed example of such a stellar caustic crossing  event\cite{Kelly:2017}. Such events may be expected to appear more  frequently in strongly lensed galaxies that have small angular  separation from the center of a massive cluster. In such a situation,  our line of sight to the lensed background galaxy passes through a  dense web of overlapping microlenses caused by the intracluster stars  distributed around the center of the cluster. This has the effect of  ``blurring'' the magnification profile across the cluster critical  curve, making it more likely that a single (and rare) massive star in  the background galaxy gets magnified by the required factor of  $\sim10^5$ to become visible as a transient caustic-crossing event.  On this basis the \spock host-galaxy images are suitably positioned  for caustic-crossing transients, as they are seen through a relatively  high density of intracluster stars (see Methods)---comparable to that  observed for the MACS J1149 LS1 transient.  The characteristic timescale of a canonical caustic-crossing event  would be on the order of hours or days (see Supplementary  Information), which is comparable to the timescales observed for the  \spock events. Gravitational lensing is achromatic as long as the size  of the source is consistent across the spectral energy distribution  (SED). This means that the color of a caustic-crossing transient will  be roughly constant. Using simplistic linear interpolations of the  observed light curves (see Methods), we find that the inferred color  curves for both \spock events are marginally consistent with this  expectation of an unchanging color (Supplementary  Figure~\ref{fig:ColorCurves}).  In the baseline lensing configuration adopted above---where a single  critical curve subtends the \spock host galaxy arc---these events  cannot plausibly be explained as stellar caustic crossings, because  neither transient is close enough to the single critical curve to  reach the required magnifications of $\mu\approx10^6$. Some of our lens  models can, however, be modified so that instead of just two host  images, the lensed galaxy arc is made up of many more images of the  host, with multiple critical curves subtending the arc where the  \spock events appeared (Figure~\ref{fig:SpockCriticalCurves}).  If this alternative lensing  situation is correct, then similar microlensing transients would be  expected to appear at different locations along the host-galaxy arc,  instigated by new caustic-crossing episodes from different stars in  the host galaxy.  \subsection{The Rate of Similar Transients.}\label{sec:Rates}  Although we lack a definitive classification for these events, we can  derive a simplistic estimate of the rate of \spock-like transients by  counting the number of strongly lensed galaxies in the HFF clusters  that have sufficiently high magnification that a source with  $M_{V}=-14$ mag would be detected in \HST imaging. There are only six  galaxies that satisfy that criteria, all with $0.5  (Methods). Each galaxy was observed by the high-cadence HFF program  for an average of 80 days. Treating \spockone and \spocktwo as  separate events leads to a very rough rate estimate of 1.5 \spock-like  events per galaxy per year.  Derivation of a volumetric rate for such events would require a  detailed analysis of the lensed volume as a function of redshift, and  is beyond the scope of this work. Nevertheless, a comparison to rates  of similar transients in the local universe can inform our assessment  of the likelihood that the \spock events are unrelated. A study of  very fast optical transients with the Pan-STARRS1 survey derived a  rate limit of $\lesssim0.05$ Mpc$^{-3}$ yr$^{-1}$ for transients  reaching $M\approx -14$ mag on a timescale of $\sim$1  day\citet{Berger:2013b}. This limit, though several orders of  magnitude higher than the constraints on novae or SNe, is sufficient  to make it exceedingly unlikely that two unrelated fast optical  transients would appear in the same galaxy in a single year.  Furthermore, we have observed no other transient events with similar  luminosities and light curve shapes in high-cadence surveys of five  other Frontier Fields clusters. Indeed, all other transients detected  in the primary HFF survey have been fully consistent with normal SNe.  Thus, we have no evidence to suggest that transients of this kind are  common enough to be observed twice in a single galaxy in a single  year.  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % DISCUSSION  \section{Discussion}\label{sec:Discussion}  We have examined three plausible explanations for the \spock events:  (1) they were separate rapid outbursts of an LBV star, (2) they were  surface explosions from a single RN, or (3) they were each caused by  the rapidly changing magnification as two unrelated massive stars  crossed over lensing caustics. We cannot make a definitive choice  between these hypotheses, principally due to the scarcity of  observational data and the uncertainty in the location of the  lensing critical curves.  If there is just a single critical curve for a source at $z=1$ passing  between the two \spock locations, then our preferred explanation for  the \spock events is that we have observed two distinct eruptive  episodes from a massive LBV star. In this scenario, the \spock LBV  system would most likely have exhibited multiple eruptions over the  last few years, but most of them were missed, as they landed within  the large gaps of the \HST Frontier Fields imaging program. The \spock  events would be extreme LBV outbursts in several dimensions, and  should add a useful benchmark for the outstanding theoretical  challenge of developing a comprehensive physical model that  accommodates both the \etacar-like great eruptions and the S Dor-type  variation of LBVs.  If instead the \macs0416 lens has multiple critical curves that  intersect both \spock locations, then the third proposal of a  microlensing-generated transient would be preferred. Stellar caustic  crossings have not been observed before, but the analysis of a likely  candidate behind the MACSJ1149 cluster\citep{Kelly:2017} suggests that massive cluster  lenses may generate such events more frequently than previously  expected\citep{Kelly:2017, Diego:2017}. To resolve the uncertainty of  the \spock classification will require refinement of the lens models  to more fully address systematic biases and more tightly constrain the  path of the critical curve. High-cadence monitoring of the \macs0416  field would also be valuable, as it could catch future LBV eruptions  or microlensing transients at or near these locations.  % END MAIN TEXT  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   % BEGIN MAIN REFERENCES  \medskip  \begin{thebibliography}{100}  \expandafter\ifx\csname url\endcsname\relax  \def\url#1{\texttt{#1}}\fi  \expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi  \providecommand{\bibinfo}[2]{#2}  \providecommand{\eprint}[2][]{\url{#2}}  \bibitem{Kasliwal:2011a}  \bibinfo{author}{{Kasliwal}, M.~M.} \emph{et~al.}  \newblock \bibinfo{title}{{Discovery of a New Photometric Sub-class of Faint  and Fast Classical Novae}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{735}},  \bibinfo{pages}{94} (\bibinfo{year}{2011}).  \bibitem{Drout:2014}  \bibinfo{author}{{Drout}, M.~R.} \emph{et~al.}  \newblock \bibinfo{title}{{Rapidly Evolving and Luminous Transients from  Pan-STARRS1}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{794}},  \bibinfo{pages}{23} (\bibinfo{year}{2014}).  \bibitem{Berger:2013b}  \bibinfo{author}{{Berger}, E.} \emph{et~al.}  \newblock \bibinfo{title}{{A Search for Fast Optical Transients in the  Pan-STARRS1 Medium-Deep Survey: M-Dwarf Flares, Asteroids, Limits on  Extragalactic Rates, and Implications for LSST}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{779}},  \bibinfo{pages}{18} (\bibinfo{year}{2013}).  \bibitem{Tyson:2002}  \bibinfo{author}{{Tyson}, J.~A.}  \newblock \bibinfo{title}{{Large Synoptic Survey Telescope: Overview}}.  \newblock In \bibinfo{editor}{{Tyson}, J.~A.} \& \bibinfo{editor}{{Wolff}, S.}  (eds.) \emph{\bibinfo{booktitle}{Survey and Other Telescope Technologies and  Discoveries}}, vol. \bibinfo{volume}{4836} of \emph{\bibinfo{series}{Society  of Photo-Optical Instrumentation Engineers (SPIE) Conference Series}},  \bibinfo{pages}{10--20} (\bibinfo{year}{2002}).  \bibitem{Lotz:2017}  \bibinfo{author}{{Lotz}, J.~M.} \emph{et~al.}  \newblock \bibinfo{title}{{The Frontier Fields: Survey Design and Initial  Results}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{837}},  \bibinfo{pages}{97} (\bibinfo{year}{2017}).  \bibitem{Caminha:2017}  \bibinfo{author}{{Caminha}, G.~B.} \emph{et~al.}  \newblock \bibinfo{title}{{A refined mass distribution of the cluster MACS  J0416.1-2403 from a new large set of spectroscopic multiply lensed sources}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{600}},  \bibinfo{pages}{A90} (\bibinfo{year}{2017}).  \bibitem{Pastorello:2013}  \bibinfo{author}{{Pastorello}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{Interacting Supernovae and Supernova Impostors: SN  2009ip, is this the End?}}  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{767}},  \bibinfo{pages}{1} (\bibinfo{year}{2013}).  \bibitem{Pastorello:2010}  \bibinfo{author}{{Pastorello}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{Multiple major outbursts from a restless luminous  blue variable in NGC 3432}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{408}},  \bibinfo{pages}{181--198} (\bibinfo{year}{2010}).  \bibitem{Zitrin:2013a}  \bibinfo{author}{{Zitrin}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{CLASH: The Enhanced Lensing Efficiency of the Highly  Elongated Merging Cluster MACS J0416.1-2403}}.  \newblock \emph{\bibinfo{journal}{\apjl}} \textbf{\bibinfo{volume}{762}},  \bibinfo{pages}{L30} (\bibinfo{year}{2013}).  \bibitem{Jauzac:2014}  \bibinfo{author}{{Jauzac}, M.} \emph{et~al.}  \newblock \bibinfo{title}{{Hubble Frontier Fields: a high-precision  strong-lensing analysis of galaxy cluster MACSJ0416.1-2403 using 200 multiple  images}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{443}},  \bibinfo{pages}{1549--1554} (\bibinfo{year}{2014}).  \bibitem{Johnson:2014}  \bibinfo{author}{{Johnson}, T.~L.} \emph{et~al.}  \newblock \bibinfo{title}{{Lens Models and Magnification Maps of the Six Hubble  Frontier Fields Clusters}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{797}},  \bibinfo{pages}{48} (\bibinfo{year}{2014}).  \bibitem{Richard:2014}  \bibinfo{author}{{Richard}, J.} \emph{et~al.}  \newblock \bibinfo{title}{{Mass and magnification maps for the Hubble Space  Telescope Frontier Fields clusters: implications for high-redshift studies}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{444}},  \bibinfo{pages}{268--289} (\bibinfo{year}{2014}).  \bibitem{Diego:2015a}  \bibinfo{author}{{Diego}, J.~M.} \emph{et~al.}  \newblock \bibinfo{title}{{A free-form lensing grid solution for A1689 with new  multiple images}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{446}},  \bibinfo{pages}{683--704} (\bibinfo{year}{2015}).  \bibitem{Grillo:2015}  \bibinfo{author}{{Grillo}, C.} \emph{et~al.}  \newblock \bibinfo{title}{{CLASH-VLT: Insights on the Mass Substructures in the  Frontier Fields Cluster MACS J0416.1-2403 through Accurate Strong Lens  Modeling}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{800}},  \bibinfo{pages}{38} (\bibinfo{year}{2015}).  \bibitem{Hoag:2016}  \bibinfo{author}{{Hoag}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{The Grism Lens-Amplified Survey from Space (GLASS).  VI. Comparing the Mass and Light in MACS J0416.1-2403 Using Frontier Field  Imaging and GLASS Spectroscopy}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{831}},  \bibinfo{pages}{182} (\bibinfo{year}{2016}).  \bibitem{Sebesta:2016}  \bibinfo{author}{{Sebesta}, K.}, \bibinfo{author}{{Williams}, L.~L.~R.},  \bibinfo{author}{{Mohammed}, I.}, \bibinfo{author}{{Saha}, P.} \&  \bibinfo{author}{{Liesenborgs}, J.}  \newblock \bibinfo{title}{{Testing light-traces-mass in Hubble Frontier Fields  Cluster MACS-J0416.1-2403}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{461}},  \bibinfo{pages}{2126--2134} (\bibinfo{year}{2016}).  \bibitem{Karoff:2016}  \bibinfo{author}{{Karoff}, C.} \emph{et~al.}  \newblock \bibinfo{title}{{Observational evidence for enhanced magnetic  activity of superflare stars}}.  \newblock \emph{\bibinfo{journal}{Nature Communications}}  \textbf{\bibinfo{volume}{7}}, \bibinfo{pages}{11058} (\bibinfo{year}{2016}).  \bibitem{Kulkarni:2007}  \bibinfo{author}{{Kulkarni}, S.~R.} \emph{et~al.}  \newblock \bibinfo{title}{{An unusually brilliant transient in the galaxy  M85}}.  \newblock \emph{\bibinfo{journal}{\nat}} \textbf{\bibinfo{volume}{447}},  \bibinfo{pages}{458--460} (\bibinfo{year}{2007}).  \bibitem{Gal-Yam:2012}  \bibinfo{author}{{Gal-Yam}, A.}  \newblock \bibinfo{title}{{Luminous Supernovae}}.  \newblock \emph{\bibinfo{journal}{Science}} \textbf{\bibinfo{volume}{337}},  \bibinfo{pages}{927--} (\bibinfo{year}{2012}).  \bibitem{Foley:2013a}  \bibinfo{author}{{Foley}, R.~J.} \emph{et~al.}  \newblock \bibinfo{title}{{Type Iax Supernovae: A New Class of Stellar  Explosion}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{767}},  \bibinfo{pages}{57} (\bibinfo{year}{2013}).  \bibitem{Kasliwal:2012}  \bibinfo{author}{{Kasliwal}, M.~M.} \emph{et~al.}  \newblock \bibinfo{title}{{Calcium-rich Gap Transients in the Remote Outskirts  of Galaxies}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{755}},  \bibinfo{pages}{161} (\bibinfo{year}{2012}).  \bibitem{Li:1998}  \bibinfo{author}{{Li}, L.-X.} \& \bibinfo{author}{{Paczy{\'n}ski}, B.}  \newblock \bibinfo{title}{{Transient Events from Neutron Star Mergers}}.  \newblock \emph{\bibinfo{journal}{\apjl}} \textbf{\bibinfo{volume}{507}},  \bibinfo{pages}{L59--L62} (\bibinfo{year}{1998}).  \bibitem{Tanvir:2013}  \bibinfo{author}{{Tanvir}, N.~R.} \emph{et~al.}  \newblock \bibinfo{title}{{A `kilonova' associated with the short-duration  {$\gamma$}-ray burst GRB 130603B}}.  \newblock \emph{\bibinfo{journal}{\nat}} \textbf{\bibinfo{volume}{500}},  \bibinfo{pages}{547--549} (\bibinfo{year}{2013}).  \bibitem{Bildsten:2007}  \bibinfo{author}{{Bildsten}, L.}, \bibinfo{author}{{Shen}, K.~J.},  \bibinfo{author}{{Weinberg}, N.~N.} \& \bibinfo{author}{{Nelemans}, G.}  \newblock \bibinfo{title}{{Faint Thermonuclear Supernovae from AM Canum  Venaticorum Binaries}}.  \newblock \emph{\bibinfo{journal}{\apjl}} \textbf{\bibinfo{volume}{662}},  \bibinfo{pages}{L95--L98} (\bibinfo{year}{2007}).  \bibitem{Barnes:2013}  \bibinfo{author}{{Barnes}, J.} \& \bibinfo{author}{{Kasen}, D.}  \newblock \bibinfo{title}{{Effect of a High Opacity on the Light Curves of  Radioactively Powered Transients from Compact Object Mergers}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{775}},  \bibinfo{pages}{18} (\bibinfo{year}{2013}).  \bibitem{Kasen:2015}  \bibinfo{author}{{Kasen}, D.}, \bibinfo{author}{{Fern{\'a}ndez}, R.} \&  \bibinfo{author}{{Metzger}, B.~D.}  \newblock \bibinfo{title}{{Kilonova light curves from the disc wind outflows of  compact object mergers}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{450}},  \bibinfo{pages}{1777--1786} (\bibinfo{year}{2015}).  \bibitem{Shen:2010}  \bibinfo{author}{{Shen}, K.~J.}, \bibinfo{author}{{Kasen}, D.},  \bibinfo{author}{{Weinberg}, N.~N.}, \bibinfo{author}{{Bildsten}, L.} \&  \bibinfo{author}{{Scannapieco}, E.}  \newblock \bibinfo{title}{{Thermonuclear .Ia Supernovae from Helium Shell  Detonations: Explosion Models and Observables}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{715}},  \bibinfo{pages}{767--774} (\bibinfo{year}{2010}).  \bibitem{Smith:2011b}  \bibinfo{author}{{Smith}, N.}, \bibinfo{author}{{Li}, W.},  \bibinfo{author}{{Silverman}, J.~M.}, \bibinfo{author}{{Ganeshalingam}, M.}  \& \bibinfo{author}{{Filippenko}, A.~V.}  \newblock \bibinfo{title}{{Luminous blue variable eruptions and related  transients: diversity of progenitors and outburst properties}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{415}},  \bibinfo{pages}{773--810} (\bibinfo{year}{2011}).  \bibitem{Kochanek:2012}  \bibinfo{author}{{Kochanek}, C.~S.}, \bibinfo{author}{{Szczygie{\l}}, D.~M.} \&  \bibinfo{author}{{Stanek}, K.~Z.}  \newblock \bibinfo{title}{{Unmasking the Supernova Impostors}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{758}},  \bibinfo{pages}{142} (\bibinfo{year}{2012}).  \bibitem{Maza:2009}  \bibinfo{author}{{Maza}, J.} \emph{et~al.}  \newblock \bibinfo{title}{Supernova 2009ip in ngc 7259}.  \newblock \emph{\bibinfo{journal}{CBET}} \bibinfo{pages}{1}  (\bibinfo{year}{2009}).  \bibitem{Miller:2009}  \bibinfo{author}{{Miller}, A.~A.} \emph{et~al.}  \newblock \bibinfo{title}{{A Previous Transient Consistent with the Location of  SN 2009ip Suggests that SN 2009ip is Not a Supernova}}.  \newblock \emph{\bibinfo{journal}{The Astronomer's Telegram}}  \textbf{\bibinfo{volume}{2183}} (\bibinfo{year}{2009}).  \bibitem{Li:2009}  \bibinfo{author}{{Li}, W.}, \bibinfo{author}{{Smith}, N.},  \bibinfo{author}{{Miller}, A.~A.} \& \bibinfo{author}{{Filippenko}, A.~V.}  \newblock \bibinfo{title}{{Rebrightening of SN 2009ip is Reminiscent of eta  Carinae Just Before 1843 Eruption}}.  \newblock \emph{\bibinfo{journal}{The Astronomer's Telegram}}  \textbf{\bibinfo{volume}{2212}} (\bibinfo{year}{2009}).  \bibitem{Berger:2009}  \bibinfo{author}{{Berger}, E.}, \bibinfo{author}{{Foley}, R.} \&  \bibinfo{author}{{Ivans}, I.}  \newblock \bibinfo{title}{{SN 2009ip is an LBV Outburst}}.  \newblock \emph{\bibinfo{journal}{The Astronomer's Telegram}}  \textbf{\bibinfo{volume}{2184}} (\bibinfo{year}{2009}).  \bibitem{Kilpatrick:2017}  \bibinfo{author}{{Kilpatrick}, C.~D.} \emph{et~al.}  \newblock \bibinfo{title}{{Connecting the progenitors, pre-explosion  variability, and giant outbursts of luminous blue variables with Gaia16cfr}}.  \newblock \emph{\bibinfo{journal}{arXiv: 1706.09962}} (\bibinfo{year}{2017}).  \bibitem{Pastorello:2017}  \bibinfo{author}{{Pastorello}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{Supernovae 2016bdu and 2005gl, and their link with  SN 2009ip-like transients: another piece of the puzzle}}.  \newblock \emph{\bibinfo{journal}{arXiv: 1707.00611}} (\bibinfo{year}{2017}).  \bibitem{DellaValle:1995}  \bibinfo{author}{{Della Valle}, M.} \& \bibinfo{author}{{Livio}, M.}  \newblock \bibinfo{title}{{The Calibration of Novae as Distance Indicators}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{452}},  \bibinfo{pages}{704} (\bibinfo{year}{1995}).  \bibitem{Downes:2000}  \bibinfo{author}{{Downes}, R.~A.} \& \bibinfo{author}{{Duerbeck}, H.~W.}  \newblock \bibinfo{title}{{Optical Imaging of Nova Shells and the Maximum  Magnitude-Rate of Decline Relationship}}.  \newblock \emph{\bibinfo{journal}{\aj}} \textbf{\bibinfo{volume}{120}},  \bibinfo{pages}{2007--2037} (\bibinfo{year}{2000}).  \bibitem{Shafter:2011}  \bibinfo{author}{{Shafter}, A.~W.} \emph{et~al.}  \newblock \bibinfo{title}{{A Spectroscopic and Photometric Survey of Novae in  M31}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{734}},  \bibinfo{pages}{12} (\bibinfo{year}{2011}).  \bibitem{Schaefer:2010}  \bibinfo{author}{{Schaefer}, B.~E.}  \newblock \bibinfo{title}{{Comprehensive Photometric Histories of All Known  Galactic Recurrent Novae}}.  \newblock \emph{\bibinfo{journal}{\apjs}} \textbf{\bibinfo{volume}{187}},  \bibinfo{pages}{275--373} (\bibinfo{year}{2010}).  \bibitem{Tang:2014}  \bibinfo{author}{{Tang}, S.} \emph{et~al.}  \newblock \bibinfo{title}{{An Accreting White Dwarf near the Chandrasekhar  Limit in the Andromeda Galaxy}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{786}},  \bibinfo{pages}{61} (\bibinfo{year}{2014}).  \bibitem{Darnley:2014}  \bibinfo{author}{{Darnley}, M.~J.} \emph{et~al.}  \newblock \bibinfo{title}{{A remarkable recurrent nova in M 31: The optical  observations}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{563}},  \bibinfo{pages}{L9} (\bibinfo{year}{2014}).  \bibitem{Darnley:2015}  \bibinfo{author}{{Darnley}, M.~J.} \emph{et~al.}  \newblock \bibinfo{title}{{A remarkable recurrent nova in M31: Discovery and  optical/UV observations of the predicted 2014 eruption}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{580}},  \bibinfo{pages}{A45} (\bibinfo{year}{2015}).  \bibitem{Henze:2015}  \bibinfo{author}{{Henze}, M.} \emph{et~al.}  \newblock \bibinfo{title}{{A remarkable recurrent nova in M 31: The 2010  eruption recovered and evidence of a six-month period}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{582}},  \bibinfo{pages}{L8} (\bibinfo{year}{2015}).  \bibitem{Darnley:2016}  \bibinfo{author}{{Darnley}, M.~J.} \emph{et~al.}  \newblock \bibinfo{title}{{M31N 2008-12a - The Remarkable Recurrent Nova in  M31: Panchromatic Observations of the 2015 Eruption.}}  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{833}},  \bibinfo{pages}{149} (\bibinfo{year}{2016}).  \bibitem{Yaron:2005}  \bibinfo{author}{{Yaron}, O.}, \bibinfo{author}{{Prialnik}, D.},  \bibinfo{author}{{Shara}, M.~M.} \& \bibinfo{author}{{Kovetz}, A.}  \newblock \bibinfo{title}{{An Extended Grid of Nova Models. II. The Parameter  Space of Nova Outbursts}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{623}},  \bibinfo{pages}{398--410} (\bibinfo{year}{2005}).  \bibitem{Schneider:1986}  \bibinfo{author}{{Schneider}, P.} \& \bibinfo{author}{{Weiss}, A.}  \newblock \bibinfo{title}{{The two-point-mass lens - Detailed investigation of  a special asymmetric gravitational lens}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{164}},  \bibinfo{pages}{237--259} (\bibinfo{year}{1986}).  \bibitem{MiraldaEscude:1991}  \bibinfo{author}{{MiraldaEscude}, J.}  \newblock \bibinfo{title}{{The magnification of stars crossing a caustic. I -  Lenses with smooth potentials}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{379}},  \bibinfo{pages}{94--98} (\bibinfo{year}{1991}).  \bibitem{Lewis:1993}  \bibinfo{author}{{Lewis}, G.~F.}, \bibinfo{author}{{Miralda-Escude}, J.},  \bibinfo{author}{{Richardson}, D.~C.} \& \bibinfo{author}{{Wambsganss}, J.}  \newblock \bibinfo{title}{{Microlensing light curves - A new and efficient  numerical method}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{261}},  \bibinfo{pages}{647--656} (\bibinfo{year}{1993}).  \bibitem{Diego:2017}  \bibinfo{author}{{Diego}, J.~M.} \emph{et~al.}  \newblock \bibinfo{title}{{Dark matter under the microscope: Constraining  compact dark matter with caustic crossing events}}.  \newblock \emph{\bibinfo{journal}{arXiv:1706.10281}} (\bibinfo{year}{2017}).  \bibitem{Kelly:2017}  \bibinfo{author}{{Kelly}, P.~L.} \emph{et~al.}  \newblock \bibinfo{title}{{An individual star at redshift 1.5 extremely  magnified by a galaxy-cluster lens}}.  \newblock \emph{\bibinfo{journal}{arXiv:1706.10279}} (\bibinfo{year}{2017}).  \end{thebibliography}  % END MAIN REFERENCES  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   % BEGIN POST-MATTER: ACKNOWLEDGMENTS, AUTHOR INFO, FIG LEGENDS  \clearpage  \medskip  {\bf Acknowledgments}  The authors thank Mario Livio and Laura Chomiuk for helpful discussion  of this paper, as well as Stephen Murray and Neil Gehrels for  assistance with the \Chandra and \Swift data, respectively.  Some/all of the data presented in this paper were obtained from the  Mikulski Archive for Space Telescopes (MAST). STScI is operated by the  Association of Universities for Research in Astronomy, Inc., under  NASA contract NAS5-26555. Support for MAST for non-HST data is  provided by the NASA Office of Space Science via grant NNX09AF08G and  by other grants and contracts.  This research has made use of the NASA/IPAC Extragalactic Database  (NED) which is operated by the Jet Propulsion Laboratory, California  Institute of Technology, under contract with the National Aeronautics  and Space Administration.  Financial support for this work was provided to S.A.R., O.G., and  L.G.S. by NASA through grant HST-GO-13386 from the Space Telescope  Science Institute (STScI), which is operated by Associated  Universities for Research in Astronomy, Inc. (AURA), under NASA  contract NAS 5-26555. J.M.D acknowledges support of the projects  AYA2015-64508-P (MINECO/FEDER, UE), AYA2012-39475-C02-01 and the  consolider project CSD2010-00064 funded by the Ministerio de Economia  y Competitividad. A.V.F. and P.L.K. are grateful for financial  assistance from the Christopher R. Redlich Fund, the TABASGO  Foundation, and NASA/STScI grants 14528, 14872, and 14922. The work  of A.V.F. was conducted in part at the Aspen Center for Physics, which  is supported by NSF grant PHY-1607611; he thanks the Center for its  hospitality during the neutron stars workshop in June and July 2017.  R.J.F. and the UCSC group is supported in part by NSF grant  AST-1518052 and from fellowships from the Alfred P.\ Sloan Foundation  and the David and Lucile Packard Foundation to R.J.F.  C.G. acknowledges support by VILLUM FONDEN Young Investigator  Programme through grant no. 10123. M.J. was supported by the Science  and Technology Facilities Council (grant number ST/L00075X/1) and used  the DiRAC Data Centric system at Durham University, operated by the  Institute for Computational Cosmology on behalf of the STFC DiRAC HPC  Facility (\url{www.dirac.ac.uk}). M.J. was funded by BIS National  E-infrastructure capital grant ST/K00042X/1, STFC capital grant  ST/H008519/1, and STFC DiRAC Operations grant ST/K003267/1 and Durham  University. DiRAC is part of the National E-Infrastructure. R.K. was  supported by Grant-in-Aid for JSPS Research Fellow (16J01302). M.O.  acknowledges support in part by World Premier International Research  Center Initiative (WPI Initiative), MEXT, Japan, and JSPS KAKENHI  Grant Number 26800093 and 15H05892. J.R. acknowledges support from  the ERC starting grant 336736-CALENDS. G.C. and S.H.S. thank the Max  Planck Society for support through the Max Planck Research Group of  S.H.S. T.T. and the GLASS team were funded by NASA through HST grant  HST-GO-13459 from STScI. L.L.R.W. would like to thank Minnesota  Supercomputing Institute at the University of Minnesota for providing  resources and support.  \medskip  {\bf Author Contributions}   S.~A.~R.~designed observations, processed the \HST data, organized the  analysis and wrote the manuscript. M.~B., T.~B., G.~B.~C., G.~C.,  J.~M.~D., A.~H., M.~J., R.~K., M.~O., J.~R., K.~S., S.~H.~S.,  L.~L.~R.~W., and A.~Z.~contributed to the lensing analysis with  construction and/or interpretation of a cluster lens model. I.~B.,  G.~B., C.~G., S.~H., B.~M., A.~M., P.~R., K.~B.~S., J.~S., and  B.~J.~W.~collected, processed, and/or analyzed data on the host galaxy  and other galaxies in the cluster field. R.~J.~F., S.~W.~J.,  P.~L.~K., C.~M., O.~G., J.~H., A.~G.~R., and L.-G.~S.~contributed to  the evaluation of models of astrophysical transients. A.~V.~F. and  T.~T.~assisted with the observational program design and editing of  the manuscript.  \medskip  {\bf Author Information}   \begin{enumerate}  \item \USC  \item \Munich  \item \UCDavis  \item \STScI  \item \EHU  \item \Basque  \item \Ferrara  \item \MPIA  \item \IFCA  \item \Berkeley  \item \UCSC  \item \NYU  \item \AMNH  \item \CfA  \item \Milan  \item \DARK  \item \CalTech  \item \CEA  \item \ICC  \item \ACRU  \item \Rutgers  \item \TokyoAstro  \item \LCOGT  \item \UCSB  \item \UCRiverside  \item \SaoPaulo  \item \Andalucia  \item \TokyoRCEU  \item \TokyoPhys  \item \TokyoIPMU  \item \Lyon  \item \JHU  \item \AIP  \item \Michigan  \item \ASIAA  \item \Garching  \item \UCLA  \item \Packard  \item \Arizona  \item \Minnesota  \item \BenGurion  \end{enumerate}  \medskip  {\bf Competing Interests} The authors declare that they have no competing financial interests.  \medskip  {\bf Correspondence} Correspondence and requests for materials  should be addressed to S.A.R.~(email: [email protected]).  \medskip  {\bf Supplementary Information}   Supplementary figures, tables and notes are available online.  % END OF POST-MATTER STUFF   % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   % BEGIN FIGURE LEGENDS, TABLES  \clearpage  \begin{figure*}[tbp]  \caption{\label{fig:SpockDetectionImages}  The detection of \spockone and \spocktwo in \HST imaging from the  Hubble Frontier Fields. The central panel shows the full field of the  MACSJ0416 cluster, in a combined image using optical and infrared  bands from \HST. Two boxes within the main panel demarcate the regions  where the \spock host-galaxy images appear. These regions are shown as  two inset panels on the left, highlighting the three images of the  host galaxy (labeled 11.1, 11.2, and 11.3), which are caused by the  gravitational lensing of the cluster. Two columns on the right side  show the discovery of the two transient events in optical and infrared  light, respectively. In these final two columns the top row is a  template image, the center row shows the epoch when each transient  appeared, and the bottom row is the difference image.}  \end{figure*}  \begin{figure*}  \caption{\label{fig:SpockDelayPredictions}  Predictions for the reappearance episodes of both \spockone  and \spocktwo due to gravitational lensing time delays, as listed in  Table~\ref{tab:LensModelPredictions}. The top panel shows photometry  collected at the NW position (host-galaxy image 11.2) where the first  event (\spockone) appeared in January, 2014. Optical  measurements from ACS are in blue and green, and infrared observations  from WFC3-IR are in red and orange. Each blue bar in the lower panel shows  one lens model prediction for the dates when that same physical event  (\spockone) would have also appeared in the SE location (galaxy image  11.1), due to gravitational lensing time delay. The lower panel plots  photometry from the SE position (11.1). On the right side we see the  second observed event (\spocktwo). The red bars above  show model predictions for when the NW host image 11.2 would have  exhibited the gravitationally delayed image of the \spocktwo\ event.  The width of each bar encompasses the 68\% confidence region for a  single model, and darker regions indicate an overlap from multiple  models.}  \end{figure*}  \begin{figure*}[tbp]  \caption{  \label{fig:SpockDelayPredictions}  Predictions for the reappearance episodes of both \spockone  and \spocktwo due to gravitational lensing time delays, as listed in  Table~\ref{tab:LensModelPredictions}. The top panel shows photometry  collected at the NW position (host-galaxy image 11.2) where the first  event (\spockone) appeared in January, 2014. Optical  measurements from ACS are in blue and green, and infrared observations  from WFC3-IR are in red and orange. Each blue bar in the lower panel shows  one lens model prediction for the dates when that same physical event  (\spockone) would have also appeared in the SE location (galaxy image  11.1), due to gravitational lensing time delay. The lower panel plots  photometry from the SE position (11.1). On the right side we see the  second observed event (\spocktwo). The red bars above  show model predictions for when the NW host image 11.2 would have  exhibited the gravitationally delayed image of the \spocktwo\ event.  The width of each bar encompasses the 68\% confidence region for a  single model, and darker regions indicate an overlap from multiple  models.  }  \end{figure*}  \begin{figure*}[tbp]  \caption{  \label{fig:SpockCriticalCurves}  Locations of the lensing critical curves relative to the positions of  the two \spock sources. Panel (a) shows the \HST Frontier Fields  composite near-infrared image of the full \macs0416 field. The  magnification map for a source at $z=1$ is overlaid with orange and  black contours\citet{Caminha:2017}. The white box marks the region  that is shown in panel (b) with a closer view of the \spock host  galaxy. Panel (c) shows a trace of the lensing critical curve from  the GRALE model, and panels (d)-(i) show magnification maps for the  six other primary models, all for a source at the \spock redshift.  The magnification maps are plotted with log scaling, such that white  is $\mu=1$ and black is $\mu=10^3$. Panels j-m show the same  magnification maps, extracted from the lens model variations (see  Methods).  }  \end{figure*}  \begin{figure*}[tbp]  \caption{   \label{fig:LightCurves}  Light curves for the two transient events, \spockone\ on the left  and \spocktwo\ on the right. Measured fluxes in micro-Janskys are  plotted against rest-frame time at $z=1.0054$, relative to the time of  the peak observed flux for each event. The corresponding Modified  Julian Date (MJD) in the observer frame is marked on the top axis for  each panel. As indicated in the legend, optical observations using  the \HST\ ACS-WFC detector are plotted as circles, while infrared  measurements from the WFC3-IR detector are plotted as squares.  }  \end{figure*}  \begin{figure*}[tbp]  \caption{   \label{fig:PeakLuminosityDeclineTime}  Peak luminosity vs. decline time for \spock and assorted categories of  explosive transients. Observed constraints of the \spock events are  plotted as overlapping colored bands, along the left side of the  figure. \spockone is shown as cyan and blue bands, corresponding to  independent constraints drawn from the F435W and F814W light curves,  respectively. For \spocktwo the scarlet and maroon bands show  constraints from the F125W and F160W light curves, respectively. The  width and height of these bands incorporates the uncertainty due to  magnification (we adopt $7<\mu_{\rm NW}<485$ and $7<\mu_{\rm SE}<185$; see Table ~\ref{tab:LensModelPredictions}) and the time of peak. In  the left panel, ellipses and rectangles mark the luminosity and  decline-time regions occupied by various explosive transient classes.  Filled shapes show the empirical bounds for transients with a  substantial sample of known events. Dashed regions mark theoretical  expectations for rare transients that lack a significant sample size:  the ``.Ia'' class of white dwarf He shell detonations and the kilonova  class from neutron star mergers. Grey bands in both panels show the  MMRD relation for classical novae. In the right panel, circles mark  the observed peak luminosities and decline times for classical novae,  while black `+' symbols mark recurrent novae from our own Galaxy. The  large cross labeled at the bottom shows the rapid recurrence nova M31N  2008-12a. Each orange diamond marks a separate short transient event  from the two rapid LBV outburst systems, SN  2009ip\cite{Pastorello:2013} and NGC3432-LBV1 (also known as SN  2000ch)\cite{Pastorello:2010}. These LBV events provide only upper  limits on the decline time owing to limited photometric sampling.  }  \end{figure*}  %%  %% TABLES  %%  %% If there are any tables, put them here.  %%  \clearpage  \begin{deluxetable}{lccccc}  \tablewidth{0.85\textwidth}  \tablecolumns{6}  \tablecaption{Lens model predictions for time delays and  magnifications at the observed locations of the \spock  transients. \label{tab:LensModelPredictions}}  \tablehead{  \colhead{Model} &  \colhead{$\lvert\mu_{\rm NW}\rvert$} & \colhead{$\lvert\mu_{\rm SE}\rvert$} &  \colhead{$\lvert\mu_{11.3}\rvert$} &   \colhead{$\Delta t_{\rm NW:SE}$} & \colhead{$\Delta t_{\rm NW:11.3}$} \\  \colhead{} & \colhead{} & \colhead{} & \colhead{} & \colhead{(days)} & \colhead{(years)}}  \startdata  CATS & 196$^{+140}_{-53}$ & 46$^{+2}_{-1}$ & 3.3$^{+0.0}_{-0.0}$ & -1.7$^{+2.0}_{-1.9}$ & -3.7$^{+0.1}_{-0.2}$\\[0.5em]  GLAFIC & 29$^{+43}_{-10}$ & 84$^{+103}_{-38}$ & 3.0$^{+0.2}_{-0.2}$ & 4.1$^{+5.5}_{-3.4}$ & -5.0$^{+0.5}_{-0.6}$\\[0.5em]  GLEE & 182$^{+203}_{-83}$ & 67$^{+31}_{-16}$ & 2.9$^{+0.1}_{-0.1}$ & 36$^{+6}_{-7}$ & -6.1$^{+0.3}_{-0.2}$\\[0.5em]  GRALE & 13$^{+11}_{-6}$ & 12$^{+9}_{-5}$ & 3.1$^{+2.2}_{-0.9}$ & -10$^{+1}_{-7}$ & -2.5$^{+1.0}_{-3.1}$ \\[0.5em]  SWunited & 38$\pm8$ & 13$\pm1$ & 2.9 $\pm0.1$ & \nodata & \nodata \\[0.5em]  WSLAP$^{+}$ & 35$\pm$20 & 30$\pm$20 & \nodata & -48$\pm$10 & 0.8 \\[0.5em]  ZLTM & 103$^{+48}_{-40}$ & 32$^{+8}_{-10}$ & 3.5$\pm$0.3 & 43$^{+12}_{-10}$ & -3.7$\pm0.3$\\  \enddata  \tablecomments{ Each lens model is identified by the name of the  modeling team or tool. Time delays give the predicted delay relative  to an appearance in the NW host image, 11.2. Positive (negative)  values indicate the NW image is the leading (trailing) image of the  pair. The observed time lag between the NW and SE events was  $\Delta t_{\rm NW:SE}=234\pm6$ days.}  \label{tab:LensModelPredictions}  \end{deluxetable}  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  % BEGIN METHODS  \clearpage  {\bf \Large Methods}    \subsection{Discovery.}\label{sec:Discovery}  The transient \spock\ was discovered in \HST imaging collected as part  of the Hubble Frontier Fields (HFF) survey (HST-PID: 13496, PI: Lotz),  a multi-cycle program observing 6 massive galaxy clusters and  associated ``blank sky'' parallel fields\cite{Lotz:2017}. Several  \HST observing programs have provided additional observations  supplementing the core HFF program. One of these is the FrontierSN  program (HST-PID: 13386, PI: Rodney), which aims to identify and study  explosive transients found in the HFF and related  programs\citet{Rodney:2015a}. The FrontierSN team discovered  \spock\ in two separate HFF observing campaigns on the galaxy cluster  \MACS0416. The first was an imaging campaign in January, 2014 during  which the MACS0416 cluster field was observed in the F435W, F606W, and  F814W optical bands using the Advanced Camera for Surveys Wide Field  Camera (ACS-WFC). The second concluded in August, 2014, and imaged  the cluster with the infrared detector of \HST's Wide Field Camera 3  (WFC3-IR) using the F105W, F125W, F140W, and F160W bands.  To discover transient sources, the FrontierSN team processes each new  epoch of \HST data through a difference-imaging  pipeline (\url{https://github.com/srodney/sndrizpipe}), using  archival \HST images to provide reference images (templates) which are  subtracted from the astrometrically registered HFF images. In the case  of MACS0416, the templates were constructed from images collected as  part of the Cluster Lensing And Supernova survey with Hubble (CLASH,  HST-PID:12459, PI:Postman)\cite{Postman:2012}. The resulting difference images are  visually inspected for new point sources, and any new transients of  interest (primarily SNe) are monitored with additional  \HST imaging or ground-based spectroscopic observations as needed.  \subsection{Photometry.}\label{sec:Photometry}  The follow-up observations for \spock\ included \HST imaging  observations in infrared and optical bands using the WFC3-IR and  ACS-WFC detectors, respectively. Tables~\ref{tab:spockonephot} and  \ref{tab:spocktwophot} present photometry of the \spock\ events from  all available \HST observations. The flux was measured on difference  images, first using aperture photometry with a 0\farcs3 radius, and  also by fitting with an empirical point spread function (PSF). The  PSF model was defined using \HST observations of the G2V standard star  P330E, observed in a separate calibration program. A separate PSF  model was defined for each filter, but owing to the long-term  stability of the \HST PSF we used the same model in all epochs. All  of the aperture and PSF-fitting photometry was carried out using the  {\tt PythonPhot} software package  (\url{https://github.com/djones1040/PythonPhot})\citep{Jones:2015}.  \subsection{Host-Galaxy Spectroscopy.}\label{sec:Spectroscopy}  Spectroscopy of the \spock\ host galaxy was collected using three  instruments on the Very Large Telescope (VLT). Observations with the  VLT's X-shooter cross-dispersed echelle spectrograph\citep{Vernet:2011} were taken on October 19, 21 and 23, 2014  (Program 093.A-0667(A), PI: J. Hjorth) with the slit centered on the  position of \spocktwo. The total integration time was 4.0 hours for  the NIR arm of X-shooter, 3.6 hours for the VIS arm, and 3.9 hours for  the UVB arm. The spectrum did not provide any detection of the  transient source itself (as we will see below, it had already faded  back to its quiescent state by that time). However, it did provide an  unambiguous redshift for the host galaxy of $z=1.0054\pm0.0002$ from  \Ha\ and the \forbidden{O}{ii} doublet in data from the NIR and VIS  arms, respectively. These line identifications are consistent with  two measures of the photometric redshift of the host: $z=1.00\pm0.02$  from the BPZ algorithm\citep{Benitez:2000}, and $z=0.92\pm0.05$ from  the EAZY program\citep{Brammer:2008}. Both were derived from \HST  photometry of the host images 11.1 and 11.2, spanning 4350--16000 \AA.  Additional VLT observations were collected using the Visible  Multi-object Spectrograph (VIMOS)\citep{LeFevre:2003}, as part of the  CLASH-VLT large program (Program 186.A-0.798; P.I.:  P. Rosati)\citep{Rosati:2014}, which collected $\sim$4000 reliable  redshifts over 600 arcmin$^2$ in the \macs0416  field\citep{Grillo:2015,Balestra:2016}. These massively multi-object  observations could potentially have provided confirmation of the  redshift of the \spock host galaxy with separate spectral line  identifications in each of the three host-galaxy images. For the  \macs0416 field the CLASH-VLT program collected 1 hour of useful  exposure time in good seeing conditions with the Low Resolution Blue  grism. Unfortunately, the wavelength range of this grism (3600-6700  \AA) does not include any strong emission lines for a source at  $z=1.0054$, and the signal-to-noise ratio (S/N) was not sufficient to provide  any clear line identifications for the three images of the \spock host  galaxy.  The VLT Multi Unit Spectroscopic Explorer (MUSE)\citep{Henault:2003,Bacon:2012} observed the NE portion of  the MACS0416 field---where the \spock host images are located---in  December, 2014 for 2 hours of integration time (ESO program  094.A-0115, PI: J.\,Richard). These observations also confirmed the  redshift of the host galaxy with clear detection of the  \forbidden{O}{ii} doublet. Importantly, since MUSE is an integral  field spectrograph, these observations also provided a confirmation of  the redshift of the third image of the host galaxy, 11.3, with a  matching \forbidden{O}{ii} line at the same wavelength\cite{Caminha:2017}.  A final source of spectroscopic information relevant to \spock is the  Grism Lens Amplified Survey from Space (GLASS; PID:  HST-GO-13459; PI:T. Treu)\citep{Schmidt:2014,Treu:2015a}. The GLASS  program collected slitless spectroscopy on the \macs0416 field using  the WFC3-IR G102 and G141 grisms on \HST, deriving redshifts for  galaxies down to a magnitude limit $H<23$. As with the VLT VIMOS  data, the three sources identified as images of the \spock host galaxy  are too faint in the GLASS data to provide any useful line  identifications. There are also no other sources in the GLASS  redshift catalog (\url{http://glass.astro.ucla.edu/}) that  have a spectroscopic redshift consistent with $z=1.0054$.  \subsection{Gravitational Lens Models.}\label{sec:LensingModels}  The seven lens models used to provide estimates of the plausible range  of magnifications and time delays are as follows:  \begin{itemize}  \item{\it CATS:} The model of \citeref{Jauzac:2014}, version 4.1,  generated with the {\tt LENSTOOL} software  (\url{http://projects.lam.fr/repos/lenstool/wiki})\citep{Jullo:2007}  using strong lensing constraints. This model parameterizes cluster  and galaxy components using pseudo-isothermal elliptical mass  distribution (PIEMD) density profiles\citep{Kassiola:1993,  Limousin:2007}.  \item{\it GLAFIC:} The model of \citeref{Kawamata:2016}, built using  the {\tt GLAFIC} software  (\url{http://www.slac.stanford.edu/~oguri/glafic/})\citep{Oguri:2010b}  with strong-lensing constraints. This model assumes simply  parametrized mass distributions, and model parameters are  constrained using positions of more than 100 multiple images.  \item{\it GLEE:} A new model built using the {\tt GLEE}  software\citep{Suyu:2010b, Suyu:2012} with the same strong-lensing  constraints used in \citeref{Caminha:2017}, representing mass  distributions with simply parameterized mass profiles.  \item{\it GRALE:} A free-form, adaptive grid model developed using  the GRALE software tool\citep{Liesenborgs:2006, Liesenborgs:2007,  Mohammed:2014, Sebesta:2016}, which implements a genetic algorithm  to reconstruct the cluster mass distribution with hundreds to  thousands of projected Plummer\citet{Plummer:1911} density profiles.  \item{\it SWUnited:} The model of \citeref{Hoag:2016}, built using the  {\tt SWUnited} modeling method\citep{Bradac:2005, Bradac:2009}, in  which an adaptive pixelated grid iteratively adapts the mass  distribution to match both strong- and weak-lensing constraints.  Time delay predictions are not available for this model.  \item{\it WSLAP+:} Created with the {\tt WSLAP+} software  (\url{http://www.ifca.unican.es/users/jdiego/LensExplorer})\citep{Sendra:2014}:  Weak and Strong Lensing Analysis Package plus member galaxies (Note:  no weak-lensing constraints were used for this \MACS0416 model).  \item{\it ZLTM:} A model with strong- and weak-lensing constraints,  built using the ``light-traces-mass'' (LTM)  methodology\citep{Zitrin:2009a, Zitrin:2015}, first presented for  \MACS0416 in \citeref{Zitrin:2013a}.  \end{itemize}  Early versions of the {\it SWUnited}, {\it CATS}, {\it ZLTM} and {\it  GRALE} models were originally distributed as part of the Hubble  Frontier Fields lens modeling project  (\url{https://archive.stsci.edu/prepds/frontier/lensmodels/}), in  which models were generated based on data available before the start  of the HFF observations to enable rapid early investigations of lensed  sources. The versions of these models applied here are updated to  incorporate additional lensing constraints. In all cases the lens  modelers made use of strong-lensing constraints (multiply imaged  systems and arcs) derived from \HST imaging collected as part of the  CLASH program\cite{Postman:2012}). These  models also made use of spectroscopic redshifts in the cluster  field\cite{Mann:2012, Christensen:2012, Grillo:2015, Caminha:2017}.  Input weak-lensing constraints were derived from data collected at the  Subaru Telescope\cite{Umetsu:2014, Umetsu:2016} and archival imaging.  \subsection{X-ray Nondetections.}\label{sec:Xray}  The \MACS0416 field was observed by the \Swift X-Ray Telescope  and UltraViolet/Optical Telescope in April 2013. No source was  detected near the locations of the \spock events (N. Gehrels, private  communication). The field was also observed by \Chandra with the  ACIS-I instrument for three separate programs. On June 7, 2009 it was  observed for GO program 10800770 (PI: H.\,Ebeling). It was revisited  for GTO program 15800052 (PI: S.\,Murray) on November 20, 2013 and for  GO program 15800858 (PI: C.\, Jones) on June 9, August 31, November  26, and December 17, 2014. These \Chandra images show no evidence for  an x-ray emitting point source near the \spock locations on those  dates (S. Murray, private communication).  The \Chandra observations that were closest in time to the observed  \spock events were those taken in August and November, 2014. The  August 31 observations were coincident with the observed peak of  rest-frame optical emission for the \spocktwo event (on MJD  56900). The November 26 observations correspond to 44 rest-frame days  after the peak of the \spocktwo event. If the \spock events are  UV/optical nova eruption, then these observations most likely did not  coincide with the nova system's supersoft x-ray phase. For a RN system  the x-ray phase typically initiates after a short delay, and persists  for a span of only a few weeks. For example, the most rapid recurrence  nova known, M31N 2008-12a, has exhibited a supersoft x-ray phase from  6 to 18 days after the peak of the optical emission  \citep{Henze:2015a}.  \subsection{Light Curve Fitting.}\label{sec:LightCurves}  Due to the rapid decline timescale, no observations were collected for  either event that unambiguously show the declining portion of the  light curve. Therefore, we must make some assumptions for the shape of  the light curve in order to quantify the peak luminosity and the  corresponding timescales for the rise and the decline. We first  approach this with a simplistic model that is piecewise linear in  magnitude vs time. Supplementary Figure~\ref{fig:LinearLightCurveFits} shows  examples of the resulting fits for the two events. For each fit we  use only the data collected within 3 days of the brightest observed  magnitude, which allows us to fit a linear rise separately for the  F606W and F814W light curves for \spockone and the F125W and F160W  light curves for \spocktwo. To quantify the covariance between the  true peak brightness, the rise time and the decline timescale, we use  the following procedure:  \begin{enumerate}  \item make an assumption for the date of peak, $t_{\rm pk}$;  \item measure the peak magnitude at $t_{\rm pk}$ from the linear fit  to the rising light-curve data;  \item assume the source reaches a minimum brightness (maximum  magnitude) of 30 AB mag at the epoch of first observation after the  peak;  \item draw a line for the declining light curve between the assumed  peak and the assumed minimum brightness;  \item use that declining light-curve line to measure the timescale for  the event to drop by 2 mag, $t_2$;  \item make a new assumption for $t_{\rm pk}$ and repeat.  \end{enumerate}  As shown in Supplementary Figure~\ref{fig:LinearLightCurveFits}, the resulting  piecewise linear fits are simplistic, but nevertheless approximately  capture the observed behavior for both events. Furthermore, since  this toy model is not physically motivated, it allows us to remain  agnostic for the time being as to the astrophysical source(s) driving  these transients. From these fits we can see that \spockone most  likely reached a peak magnitude between 25 and 26.5 AB mag in both  F814W and F435W, and had a decline timescale $t_2$ of less than 2 days  in the rest frame. The observations of \spocktwo provide less  stringent constraints, but we see that it had a peak magnitude between  23 and 26.5 AB mag in F160W and exhibited a decline time of less than  seven days. These fits also illustrate the generic fact that a higher  peak brightness corresponds to a longer rise time and a faster decline  timescale, independent of the specific model used. Changes to the  arbitrary constraints we placed on these linear fits do not  substantially affect these results.  At any assumed value for the time of peak brightness this linear  interpolation gives an estimate of the peak magnitude. We then convert  that to a luminosity (e.g., $\nu L_\nu$ in erg s$^{-1}$) by first  correcting for the luminosity distance assuming a standard \LCDM  cosmology, and then accounting for an assumed lensing magnification,  $\mu$. The range of plausible lensing magnifications ($10<\mu<100$)  is derived from the union of our seven independent lens models. This  results in a grid of possible peak luminosities for each event as a  function of magnification and time of peak. As we are using linear  light curve fits, the assumed time of peak is equivalent to an  assumption for the decline time, which we quantify as $t_2$, the time  over which the transient declines by 2 magnitudes.  \subsection{LBV Build-up Timescale and Quiescent Luminosity.}\label{sec:LBVbuildup}  To explore some of the physical implications of an LBV classification  for the two \spock events, we first make a rough estimate of the total  radiated energy, which can be computed using the decline timescale  $t_2$ and the peak luminosity $L_{\rm pk}$:  \begin{equation}  \label{eqn:Erad}  E_{\rm rad} = \zeta \t2 \Lpk,  \end{equation}  \noindent where $\zeta$ is a dimensionless factor of order unity that  depends on the precise shape of the light  curve\cite{Smith:2011b}. Note that earlier work\cite{Smith:2011b} has  used $t_{1.5}$ instead of $t_2$, which amounts to a different  light-curve shape term, $\zeta$. Adopting \Lpk$\approx10^{41}$ erg  s$^{-1}$ and \t2$\approx$1 day (as shown in  Fig.~\ref{fig:PeakLuminosityDeclineTime}), we find that the total  radiated energy is $E_{\rm rad}\approx10^{46}$ erg. A realistic range  for this estimate would span $10^{44}  uncertainties in the magnification, bolometric luminosity correction,  decline time, and light-curve shape. These uncertainties  notwithstanding, our estimate falls well within the range of plausible  values for the total radiated energy of a major LBV outburst.  The ``build-up'' timescale\citep{Smith:2011b} matches the radiative  energy released in an LBV eruption event with the radiative energy  produced during the intervening quiescent phase,  \begin{equation}  \label{eqn:trad}  t_{\rm rad} = \frac{E_{\rm rad}}{L_{\rm qui}} = \t2 \frac{\xi\Lpk}{L_{\rm qui}},  \end{equation}  \noindent where $L_{\rm qui}$ is the luminosity of the LBV progenitor  star during quiescence.  The \spock events are not resolved as individual stars in their  quiescent phase, so we have no useful constraint on the quiescent  luminosity. Thus, instead of using a measured quiescent luminosity to  estimate the build-up timescale, we assume that $t_{\rm rad}$ for  \spock corresponds to the observed rest-frame lag between the two  events, roughly 120 days (this accounts for both cosmic time dilation  and a gravitational lensing time delay of $\sim$40 days). Adopting  $\Lpk=10^{41}$ erg s$^{-1}$ and $\t2=2$ days (see  Figure~\ref{fig:PeakLuminosityDeclineTime}), we infer that the  quiescent luminosity of the \spock progenitor would be  $L_{\rm qui}\approx10^{39.5}$ erg s$^{-1}$ ($M_V\approx-10$ mag).  \subsection{RN Light-Curve Comparison.}\label{sec:RNLightCurves}  There are ten known RNe in the Milky Way galaxy, and seven of  these exhibit outbursts that decline rapidly, fading by two magnitudes  in less than ten days\citep{Schaefer:2010}.   Supplementary Figure~\ref{fig:RecurrentNovaLightCurveComparison}  compares the \spock light curves to a composite light curve (the gray  shaded region), which encompasses the V band light curve  templates\citep{Schaefer:2010} for all seven of these galactic RN  events. The Andromeda galaxy (M31) also hosts at least one RN with a  rapidly declining light curve. The 2014 eruption of this well-studied  nova, M31N 2008-12a, is shown as a solid black line in Supplementary  Figure~\ref{fig:RecurrentNovaLightCurveComparison}, fading by 2 mag in  $<3$ days. This comparison demonstrates that the rapid decline of  both of the \spock transient events is fully consistent with the  eruptions of known RNe in the local universe.  \subsection{RN Luminosity and Recurrence Period.}\label{sec:RNLuminosityRecurrence}  To examine the recurrence period and peak brightness of the \spock  events relative to RNe, we rely on a pair of papers that evaluated an  extensive grid of nova models through multiple cycles of outburst and  quiescence\citep{Prialnik:1995,Yaron:2005}. Supplementary  Figure~\ref{fig:RecurrentNovaRecurrenceComparison} plots first the RN  outburst amplitude (the apparent magnitude between outbursts minus the  apparent magnitude at peak) and then the peak luminosity against the  log of the recurrence period in years.  For the \spock events we can only measure a lower limit on the  outburst amplitude, since the presumed progenitor star is unresolved,  so no measurement is available at quiescence. Supplementary  Figure~\ref{fig:RecurrentNovaRecurrenceComparison} shows that a  recurrence period as fast as one year is expected only for a RN system  in which the primary white dwarf is both very close to the  Chandrasekhar mass limit (1.4 \Msun) and also has an extraordinarily  rapid mass transfer rate ($\sim10^{-6}$ \Msun yr$^{-1}$). The models  of \citeref{Yaron:2005} suggest that such systems should have a very  low peak amplitude (barely consistent with the lower limit for \spock)  and a low peak luminosity ($\sim$100 times less luminous than the  \spock events).  The closest analog for the \spock events from the population of known  RN systems is the nova M31N\,2008-12a. \citeref{Kato:2015} provided a  theoretical model that can account for the key observational  characteristics of this remarkable nova: the very rapid recurrence  timescale ($<$1 yr), fast optical light curve ($\t2\sim2$ days), and  short supersoft x-ray phase (6-18 days after optical  outburst)\citep{Henze:2015a}. To match these observations,  \citeref{Kato:2015} invoke a 1.38 \Msun white dwarf primary,  drawing mass from a companion at a rate of $1.6\times10^{-7}$ \Msun  yr$^{-1}$. This is largely consistent with the theoretical  expectations derived by \citeref{Yaron:2005}, and reinforces the  conclusion that a combination of a high-mass white dwarf and efficient  mass transfer are the key ingredients for rapid recurrence and short  light curves. The one feature that cannot be effectively explained  with this hypothesis is the peculiarly high luminosity of the \spock  events -- even after accounting for the very large uncertainties.   \subsection{Intracluster Light.}\label{sec:ICL}  To estimate the mass of intracluster stars along the line of sight to  the \spock events, we follow the procedure of \citeref{Kelly:2017} and  Morishita et al. (in prep). This entails fitting and removing the  surface brightness of individual galaxies in the field, then fitting a  smooth profile to the residual surface brightness of intracluster  light (ICL). The surface brightness is then converted to a projected  stellar mass surface density by assuming a  Chabrier\cite{Chabrier:2003} initial mass function and an  exponentially declining star formation history. This procedure leads  to an estimate for the intracluster stellar mass of $\log  (\Sigma_{\star} / (\Msun\,{\rm kpc}^{-2})) = 6.9\pm0.4$. This is  very similar to the value of $6.8^{+0.4}_{-0.3}$ inferred for the  probable caustic crossing star M1149 LS1\cite{Kelly:2017}.  \subsection{Color Curves.}\label{sec:ColorCurves}  At $z=1$ the observed optical and infrared bands translate to  rest-frame ultraviolet (UV) and optical wavelengths, respectively. To  derive rest-frame UV and optical colors from the observed photometry,  we start with the measured magnitude in a relatively blue band (F435W  and F606W for \spockone and F105W, F125W, F140W for \spocktwo). We  then subtract the coeval magnitude for a matched red band (F814W for  \spockone, F125W or F160W for \spocktwo), derived from the linear fits  to those bands. To adjust these to rest-frame filters, we apply K  corrections\citep{Hogg:2002}, which we compute by  defining a crude SED via linear interpolation between the observed  broad bands for each transient event at each epoch. For consistency  with past published results, we include in each K correction a  transformation from AB to Vega-based magnitudes. The resulting UV and  optical colors are plotted in Supplementary Figure~\ref{fig:ColorCurves}. Both  \spockone and \spocktwo show little or no color variation over the  period where color information is available. This lack of color  evolution is compatible with all three of the primary hypotheses  advanced, as it is possible to have no discernible color evolution  from either an LBV or RN over this short time span, and microlensing  events inherently exhibit an unchanging color.  If these two events are from a single source then one could construct  a composite SED from rest-frame UV to optical wavelengths by combining  the NW and SE flux measurements, but only after correcting for the  relative magnification. Figure~\ref{fig:LightCurves}  shows that the observed peak brightnesses for the two events agree to  within $\sim30\%$. This implies that for any composite SED, the  rest-frame UV to optical flux ratio is approximately equal to the  NW:SE magnification ratio, and any extreme asymmetry in the  magnification would indicate a very steep slope in the SED.  \subsection{Rates.}\label{sec:RatesMethods}  To derive a rough estimate of the rate of \spock-like transients, we  first define the set of strongly lensed galaxies in which a similarly  faint and fast transient could have been detected in the HFF  imaging. The single-epoch detection limit of the HFF transient search  was $m_{\rm lim}=26.7$ AB mag, consistent with the SN searches carried  out in the CLASH and CANDELS programs\cite{Graur:2014,Rodney:2014}.  For a transient with peak brightness $M_{V}>-14$ mag to be detected,  the host galaxy must be amplified by strong lensing with a  magnification $\mu>20$ at $z\sim1$, growing to $\mu>100$ at $z\sim2$.  Using photometric redshifts and magnifications derived from the GLAFIC  lens models of the six HFF clusters, we find $N_{\rm gal}=6$ galaxies  that satisfy this criterion, with $0.5  Figure~\ref{fig:StronglyLensedGalaxies}).  We then define the {\it control time}, $t_{c}$, for the HFF survey,  which gives the span of time over which each cluster was observed with  a cadence sufficient for detection of such rapid transients. We  define this as any period in which at least two \HST observations were  collected within every 10 day span. This effectively includes the  entirety of the primary HFF campaigns on each cluster, but excludes  all of the ancillary data collection periods from supplemental \HST  imaging programs. The average control time for an HFF cluster is  $t_{c} = 0.22$ years (80 days). Treating each \spock event as a  separate detection, we can derive a rate estimate using $R = 2 /  (N_{\rm gal}\,t_c)$. This yields $R=1.5$ events galaxy$^{-1}$  year$^{-1}$.   Future examination of the rate of such transients should consider the  total stellar mass and the star-formation rates of the galaxies  surveyed, or use a projection of the lensed background area onto the  source plane to derive a volumetric rate. Such analyses would require  a more detailed exploration of the impact of lensing uncertainties on  derived properties of the lensed galaxies and the lensed volume, and  this is beyond the scope of the current work.  % END OF METHODS SECTION  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   % DATA AVAILABILITY STATEMENT  The data that support the plots within this paper and other findings  of this study are available from the corresponding author upon  reasonable request. All \HST data utilized for this work are  available through the Mikulski Archive for Space Telescopes (MAST).  \clearpage  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   % ADDITIONAL REFERENCES FROM METHODS  \begin{thebibliography}{100}  \expandafter\ifx\csname url\endcsname\relax  \def\url#1{\texttt{#1}}\fi  \expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi  \providecommand{\bibinfo}[2]{#2}  \providecommand{\eprint}[2][]{\url{#2}}  \makeatletter  \addtocounter{\@listctr}{47}  \makeatother  \bibitem{Rodney:2015a}  \bibinfo{author}{{Rodney}, S.~A.} \emph{et~al.}  \newblock \bibinfo{title}{{Illuminating a Dark Lens : A Type Ia Supernova  Magnified by the Frontier Fields Galaxy Cluster Abell 2744}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{811}},  \bibinfo{pages}{70} (\bibinfo{year}{2015}).  \bibitem{Postman:2012}  \bibinfo{author}{{Postman}, M.} \emph{et~al.}  \newblock \bibinfo{title}{{The Cluster Lensing and Supernova Survey with  Hubble: An Overview}}.  \newblock \emph{\bibinfo{journal}{\apjs}} \textbf{\bibinfo{volume}{199}},  \bibinfo{pages}{25} (\bibinfo{year}{2012}).  \bibitem{Jones:2015}  \bibinfo{author}{{Jones}, D.~O.}, \bibinfo{author}{{Scolnic}, D.~M.} \&  \bibinfo{author}{{Rodney}, S.~A.}  \newblock \bibinfo{title}{{PythonPhot: Simple DAOPHOT-type photometry in  Python}}.  \newblock \bibinfo{howpublished}{Astrophysics Source Code Library}  (\bibinfo{year}{2015}).  \bibitem{Vernet:2011}  \bibinfo{author}{{Vernet}, J.} \emph{et~al.}  \newblock \bibinfo{title}{{X-shooter, the new wide band intermediate resolution  spectrograph at the ESO Very Large Telescope}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{536}},  \bibinfo{pages}{A105} (\bibinfo{year}{2011}).  \bibitem{Benitez:2000}  \bibinfo{author}{{Ben{\'{\i}}tez}, N.}  \newblock \bibinfo{title}{{Bayesian Photometric Redshift Estimation}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{536}},  \bibinfo{pages}{571--583} (\bibinfo{year}{2000}).  \bibitem{Brammer:2008}  \bibinfo{author}{{Brammer}, G.~B.}, \bibinfo{author}{{van Dokkum}, P.~G.} \&  \bibinfo{author}{{Coppi}, P.}  \newblock \bibinfo{title}{{EAZY: A Fast, Public Photometric Redshift Code}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{686}},  \bibinfo{pages}{1503--1513} (\bibinfo{year}{2008}).  \bibitem{LeFevre:2003}  \bibinfo{author}{{Le F{\`e}vre}, O.} \emph{et~al.}  \newblock \bibinfo{title}{{Commissioning and performances of the VLT-VIMOS  instrument}}.  \newblock In \bibinfo{editor}{{Iye}, M.} \& \bibinfo{editor}{{Moorwood},  A.~F.~M.} (eds.) \emph{\bibinfo{booktitle}{Instrument Design and Performance  for Optical/Infrared Ground-based Telescopes}}, vol. \bibinfo{volume}{4841}  of \emph{\bibinfo{series}{Society of Photo-Optical Instrumentation Engineers  (SPIE) Conference Series}}, \bibinfo{pages}{1670--1681}  (\bibinfo{year}{2003}).  \bibitem{Rosati:2014}  \bibinfo{author}{{Rosati}, P.} \emph{et~al.}  \newblock \bibinfo{title}{{CLASH-VLT: A VIMOS Large Programme to Map the Dark  Matter Mass Distribution in Galaxy Clusters and Probe Distant Lensed  Galaxies}}.  \newblock \emph{\bibinfo{journal}{The Messenger}}  \textbf{\bibinfo{volume}{158}}, \bibinfo{pages}{48--53}  (\bibinfo{year}{2014}).  \bibitem{Balestra:2016}  \bibinfo{author}{{Balestra}, I.} \emph{et~al.}  \newblock \bibinfo{title}{{CLASH-VLT: Dissecting the Frontier Fields Galaxy  Cluster MACS J0416.1-2403 with 800 Spectra of Member Galaxies}}.  \newblock \emph{\bibinfo{journal}{\apjs}} \textbf{\bibinfo{volume}{224}},  \bibinfo{pages}{33} (\bibinfo{year}{2016}).  \bibitem{Henault:2003}  \bibinfo{author}{{Henault}, F.} \emph{et~al.}  \newblock \bibinfo{title}{{MUSE: a second-generation integral-field  spectrograph for the VLT}}.  \newblock In \bibinfo{editor}{{Iye}, M.} \& \bibinfo{editor}{{Moorwood},  A.~F.~M.} (eds.) \emph{\bibinfo{booktitle}{Instrument Design and Performance  for Optical/Infrared Ground-based Telescopes}}, vol. \bibinfo{volume}{4841}  of \emph{\bibinfo{series}{\procspie}}, \bibinfo{pages}{1096--1107}  (\bibinfo{year}{2003}).  \bibitem{Bacon:2012}  \bibinfo{author}{{Bacon}, R.} \emph{et~al.}  \newblock \bibinfo{title}{{News of the MUSE}}.  \newblock \emph{\bibinfo{journal}{The Messenger}}  \textbf{\bibinfo{volume}{147}}, \bibinfo{pages}{4--6} (\bibinfo{year}{2012}).  \bibitem{Schmidt:2014}  \bibinfo{author}{{Schmidt}, K.~B.} \emph{et~al.}  \newblock \bibinfo{title}{{Through the Looking GLASS: HST Spectroscopy of Faint  Galaxies Lensed by the Frontier Fields Cluster MACSJ0717.5+3745}}.  \newblock \emph{\bibinfo{journal}{\apjl}} \textbf{\bibinfo{volume}{782}},  \bibinfo{pages}{L36} (\bibinfo{year}{2014}).  \bibitem{Treu:2015a}  \bibinfo{author}{{Treu}, T.} \emph{et~al.}  \newblock \bibinfo{title}{{The Grism Lens-Amplified Survey from Space (GLASS).  I. Survey Overview and First Data Release}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{812}},  \bibinfo{pages}{114} (\bibinfo{year}{2015}).  \bibitem{Jullo:2007}  \bibinfo{author}{{Jullo}, E.} \emph{et~al.}  \newblock \bibinfo{title}{{A Bayesian approach to strong lensing modelling of  galaxy clusters}}.  \newblock \emph{\bibinfo{journal}{New Journal of Physics}}  \textbf{\bibinfo{volume}{9}}, \bibinfo{pages}{447} (\bibinfo{year}{2007}).  \bibitem{Kassiola:1993}  \bibinfo{author}{{Kassiola}, A.} \& \bibinfo{author}{{Kovner}, I.}  \newblock \bibinfo{title}{{Elliptic Mass Distributions versus Elliptic  Potentials in Gravitational Lenses}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{417}},  \bibinfo{pages}{450} (\bibinfo{year}{1993}).  \bibitem{Limousin:2007}  \bibinfo{author}{{Limousin}, M.} \emph{et~al.}  \newblock \bibinfo{title}{{Combining Strong and Weak Gravitational Lensing in  Abell 1689}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{668}},  \bibinfo{pages}{643--666} (\bibinfo{year}{2007}).  \bibitem{Kawamata:2016}  \bibinfo{author}{{Kawamata}, R.}, \bibinfo{author}{{Oguri}, M.},  \bibinfo{author}{{Ishigaki}, M.}, \bibinfo{author}{{Shimasaku}, K.} \&  \bibinfo{author}{{Ouchi}, M.}  \newblock \bibinfo{title}{{Precise Strong Lensing Mass Modeling of Four Hubble  Frontier Field Clusters and a Sample of Magnified High-redshift Galaxies}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{819}},  \bibinfo{pages}{114} (\bibinfo{year}{2016}).  \bibitem{Oguri:2010b}  \bibinfo{author}{{Oguri}, M.}  \newblock \bibinfo{title}{{The Mass Distribution of SDSS J1004+4112  Revisited}}.  \newblock \emph{\bibinfo{journal}{\pasj}} \textbf{\bibinfo{volume}{62}},  \bibinfo{pages}{1017--} (\bibinfo{year}{2010}).  \bibitem{Suyu:2010b}  \bibinfo{author}{{Suyu}, S.~H.} \& \bibinfo{author}{{Halkola}, A.}  \newblock \bibinfo{title}{{The halos of satellite galaxies: the companion of  the massive elliptical lens SL2S J08544-0121}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{524}},  \bibinfo{pages}{A94} (\bibinfo{year}{2010}).  \bibitem{Suyu:2012}  \bibinfo{author}{{Suyu}, S.~H.} \emph{et~al.}  \newblock \bibinfo{title}{{Disentangling Baryons and Dark Matter in the Spiral  Gravitational Lens B1933+503}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{750}},  \bibinfo{pages}{10} (\bibinfo{year}{2012}).  \bibitem{Liesenborgs:2006}  \bibinfo{author}{{Liesenborgs}, J.}, \bibinfo{author}{{De Rijcke}, S.} \&  \bibinfo{author}{{Dejonghe}, H.}  \newblock \bibinfo{title}{{A genetic algorithm for the non-parametric inversion  of strong lensing systems}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{367}},  \bibinfo{pages}{1209--1216} (\bibinfo{year}{2006}).  \bibitem{Liesenborgs:2007}  \bibinfo{author}{{Liesenborgs}, J.}, \bibinfo{author}{{de Rijcke}, S.},  \bibinfo{author}{{Dejonghe}, H.} \& \bibinfo{author}{{Bekaert}, P.}  \newblock \bibinfo{title}{{Non-parametric inversion of gravitational lensing  systems with few images using a multi-objective genetic algorithm}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{380}},  \bibinfo{pages}{1729--1736} (\bibinfo{year}{2007}).  \bibitem{Mohammed:2014}  \bibinfo{author}{{Mohammed}, I.}, \bibinfo{author}{{Liesenborgs}, J.},  \bibinfo{author}{{Saha}, P.} \& \bibinfo{author}{{Williams}, L.~L.~R.}  \newblock \bibinfo{title}{{Mass-galaxy offsets in Abell 3827, 2218 and 1689:  intrinsic properties or line-of-sight substructures?}}  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{439}},  \bibinfo{pages}{2651--2661} (\bibinfo{year}{2014}).  \bibitem{Plummer:1911}  \bibinfo{author}{{Plummer}, H.~C.}  \newblock \bibinfo{title}{{On the problem of distribution in globular star  clusters}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{71}},  \bibinfo{pages}{460--470} (\bibinfo{year}{1911}).  \bibitem{Bradac:2005}  \bibinfo{author}{{Brada{\v c}}, M.}, \bibinfo{author}{{Schneider}, P.},  \bibinfo{author}{{Lombardi}, M.} \& \bibinfo{author}{{Erben}, T.}  \newblock \bibinfo{title}{{Strong and weak lensing united}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{437}},  \bibinfo{pages}{39--48} (\bibinfo{year}{2005}).  \bibitem{Bradac:2009}  \bibinfo{author}{{Brada{\v c}}, M.} \emph{et~al.}  \newblock \bibinfo{title}{{Focusing Cosmic Telescopes: Exploring Redshift z  \~{} 5-6 Galaxies with the Bullet Cluster 1E0657 - 56}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{706}},  \bibinfo{pages}{1201--1212} (\bibinfo{year}{2009}).  \bibitem{Sendra:2014}  \bibinfo{author}{{Sendra}, I.}, \bibinfo{author}{{Diego}, J.~M.},  \bibinfo{author}{{Broadhurst}, T.} \& \bibinfo{author}{{Lazkoz}, R.}  \newblock \bibinfo{title}{{Enabling non-parametric strong lensing models to  derive reliable cluster mass distributions - WSLAP+}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{437}},  \bibinfo{pages}{2642--2651} (\bibinfo{year}{2014}).  \bibitem{Zitrin:2009a}  \bibinfo{author}{{Zitrin}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{New multiply-lensed galaxies identified in ACS/NIC3  observations of Cl0024+1654 using an improved mass model}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{396}},  \bibinfo{pages}{1985--2002} (\bibinfo{year}{2009}).  \bibitem{Zitrin:2015}  \bibinfo{author}{{Zitrin}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{Hubble Space Telescope Combined Strong and Weak  Lensing Analysis of the CLASH Sample: Mass and Magnification Models and  Systematic Uncertainties}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{801}},  \bibinfo{pages}{44} (\bibinfo{year}{2015}).  \bibitem{Mann:2012}  \bibinfo{author}{{Mann}, A.~W.} \& \bibinfo{author}{{Ebeling}, H.}  \newblock \bibinfo{title}{{X-ray-optical classification of cluster mergers and  the evolution of the cluster merger fraction}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{420}},  \bibinfo{pages}{2120--2138} (\bibinfo{year}{2012}).  \bibitem{Christensen:2012}  \bibinfo{author}{{Christensen}, L.} \emph{et~al.}  \newblock \bibinfo{title}{{The low-mass end of the fundamental relation for  gravitationally lensed star-forming galaxies at 1 < z < 6}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{427}},  \bibinfo{pages}{1953--1972} (\bibinfo{year}{2012}).  \bibitem{Umetsu:2014}  \bibinfo{author}{{Umetsu}, K.} \emph{et~al.}  \newblock \bibinfo{title}{{CLASH: Weak-lensing Shear-and-magnification Analysis of 20 Galaxy Clusters}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{795}},  \bibinfo{pages}{163--188} (\bibinfo{year}{2014}).  \bibitem{Umetsu:2016} \bibinfo{author}{{Umetsu}, K.} \emph{et~al.}  \newblock \bibinfo{title}{{CLASH: Joint Analysis of Strong-lensing,  Weak-lensing Shear, and Magnification Data for 20 Galaxy  Clusters}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{821}},  \bibinfo{pages}{116--145} (\bibinfo{year}{2016}).  \bibitem{Henze:2015a}  \bibinfo{author}{{Henze}, M.} \emph{et~al.}  \newblock \bibinfo{title}{{A remarkable recurrent nova in M 31: The predicted  2014 outburst in X-rays with Swift}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{580}},  \bibinfo{pages}{A46} (\bibinfo{year}{2015}).  \bibitem{Prialnik:1995}  \bibinfo{author}{{Prialnik}, D.} \& \bibinfo{author}{{Kovetz}, A.}  \newblock \bibinfo{title}{{An extended grid of multicycle nova evolution  models}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{445}},  \bibinfo{pages}{789--810} (\bibinfo{year}{1995}).  \bibitem{Kato:2015}  \bibinfo{author}{{Kato}, M.}, \bibinfo{author}{{Saio}, H.} \&  \bibinfo{author}{{Hachisu}, I.}  \newblock \bibinfo{title}{{Multi-wavelength Light Curve Model of the One-year  Recurrence Period Nova M31N 2008-12A}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{808}},  \bibinfo{pages}{52} (\bibinfo{year}{2015}).  \bibitem{Chabrier:2003}  \bibinfo{author}{{Chabrier}, G.}  \newblock \bibinfo{title}{{Galactic Stellar and Substellar Initial Mass  Function}}.  \newblock \emph{\bibinfo{journal}{\pasp}} \textbf{\bibinfo{volume}{115}},  \bibinfo{pages}{763--795} (\bibinfo{year}{2003}).  \bibitem{Hogg:2002}  \bibinfo{author}{Hogg, D.~W.}, \bibinfo{author}{Baldry, I.~K.},  \bibinfo{author}{Blanton, M.~R.} \& \bibinfo{author}{Eisenstein, D.~J.}  \newblock \bibinfo{title}{The k correction}.  \newblock \emph{\bibinfo{journal}{arXiv:astro-ph/0210394}}  (\bibinfo{year}{2002}).  \bibitem{Graur:2014}  \bibinfo{author}{{Graur}, O.} \emph{et~al.}  \newblock \bibinfo{title}{{Type-Ia Supernova Rates to Redshift 2.4 from CLASH:  The Cluster Lensing And Supernova Survey with Hubble}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{783}},  \bibinfo{pages}{28} (\bibinfo{year}{2014}).  \bibitem{Rodney:2014}  \bibinfo{author}{{Rodney}, S.~A.} \emph{et~al.}  \newblock \bibinfo{title}{{Type Ia Supernova Rate Measurements to Redshift 2.5  from CANDELS: Searching for Prompt Explosions in the Early Universe}}.  \newblock \emph{\bibinfo{journal}{\aj}} \textbf{\bibinfo{volume}{148}},  \bibinfo{pages}{13} (\bibinfo{year}{2014}).  \bibitem{Sersic:1963}  \bibinfo{author}{{S{\'e}rsic}, J.~L.}  \newblock \bibinfo{title}{{Influence of the atmospheric and instrumental  dispersion on the brightness distribution in a galaxy}}.  \newblock \emph{\bibinfo{journal}{Boletin de la Asociacion Argentina de  Astronomia La Plata Argentina}} \textbf{\bibinfo{volume}{6}},  \bibinfo{pages}{41} (\bibinfo{year}{1963}).  \bibitem{Akaike:1974}  \bibinfo{author}{Akaike, H.}  \newblock \bibinfo{title}{A new look at the statistical model identification}.  \newblock \emph{\bibinfo{journal}{Automatic Control, IEEE Transactions on}}  \textbf{\bibinfo{volume}{19}}, \bibinfo{pages}{716--723}  (\bibinfo{year}{1974}).  \bibitem{Hemmati:2014}  \bibinfo{author}{{Hemmati}, S.} \emph{et~al.}  \newblock \bibinfo{title}{{Kiloparsec-scale Properties of Emission-line  Galaxies}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{797}},  \bibinfo{pages}{108} (\bibinfo{year}{2014}).  \bibitem{Wambsganss:2001}  \bibinfo{author}{{Wambsganss}, J.}  \newblock \bibinfo{title}{{Quasar Microlensing}}.  \newblock In \bibinfo{editor}{{Brainerd}, T.~G.} \&  \bibinfo{editor}{{Kochanek}, C.~S.} (eds.)  \emph{\bibinfo{booktitle}{Gravitational Lensing: Recent Progress and Future  Go}}, vol. \bibinfo{volume}{237} of \emph{\bibinfo{series}{Astronomical  Society of the Pacific Conference Series}}, \bibinfo{pages}{185}  (\bibinfo{year}{2001}).  \bibitem{Kochanek:2004}  \bibinfo{author}{{Kochanek}, C.~S.}  \newblock \bibinfo{title}{{Quantitative Interpretation of Quasar Microlensing  Light Curves}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{605}},  \bibinfo{pages}{58--77} (\bibinfo{year}{2004}).  \bibitem{Paczynski:1986}  \bibinfo{author}{{Paczynski}, B.}  \newblock \bibinfo{title}{{Gravitational microlensing by the galactic halo}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{304}},  \bibinfo{pages}{1--5} (\bibinfo{year}{1986}).  \bibitem{Alcock:1993}  \bibinfo{author}{{Alcock}, C.} \emph{et~al.}  \newblock \bibinfo{title}{{Possible gravitational microlensing of a star in the  Large Magellanic Cloud}}.  \newblock \emph{\bibinfo{journal}{\nat}} \textbf{\bibinfo{volume}{365}},  \bibinfo{pages}{621--623} (\bibinfo{year}{1993}).  \bibitem{Aubourg:1993}  \bibinfo{author}{{Aubourg}, E.} \emph{et~al.}  \newblock \bibinfo{title}{{Evidence for gravitational microlensing by dark  objects in the Galactic halo}}.  \newblock \emph{\bibinfo{journal}{\nat}} \textbf{\bibinfo{volume}{365}},  \bibinfo{pages}{623--625} (\bibinfo{year}{1993}).  \bibitem{Udalski:1993}  \bibinfo{author}{{Udalski}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{The optical gravitational lensing experiment.  Discovery of the first candidate microlensing event in the direction of the  Galactic Bulge}}.  \newblock \emph{\bibinfo{journal}{ACTAA}} \textbf{\bibinfo{volume}{43}},  \bibinfo{pages}{289--294} (\bibinfo{year}{1993}).  \bibitem{Chang:1979}  \bibinfo{author}{{Chang}, K.} \& \bibinfo{author}{{Refsdal}, S.}  \newblock \bibinfo{title}{{Flux variations of QSO 0957+561 A, B and image  splitting by stars near the light path}}.  \newblock \emph{\bibinfo{journal}{\nat}} \textbf{\bibinfo{volume}{282}},  \bibinfo{pages}{561--564} (\bibinfo{year}{1979}).  \bibitem{Chang:1984}  \bibinfo{author}{{Chang}, K.} \& \bibinfo{author}{{Refsdal}, S.}  \newblock \bibinfo{title}{{Star disturbances in gravitational lens galaxies}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{132}},  \bibinfo{pages}{168--178} (\bibinfo{year}{1984}).  \bibitem{Planck:2016}  \bibinfo{author}{{Planck Collaboration}} \emph{et~al.}  \newblock \bibinfo{title}{{Planck 2015 results. XIII. Cosmological  parameters}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{594}},  \bibinfo{pages}{A13} (\bibinfo{year}{2016}).  \end{thebibliography}  \end{document}