srodney adopted Alex's edits, fixed references.  over 6 years ago

Commit id: 0203bee179ace0e1c6b30861fe5e8fa04269c726

deletions | additions      

       

%% This BibTeX bibliography file was created using BibDesk.  %% http://bibdesk.sourceforge.net/  %% Created for rodney at 2017-07-10 00:46:55 2017-09-14 09:00:11  -0400 %% Saved with string encoding Unicode (UTF-8)   @article{Umetsu:2016,  Author = {{Umetsu}, K. and {Zitrin}, A. and {Gruen}, D. and {Merten}, J. and {Donahue}, M. and {Postman}, M.},  Journal = {\apj},  Month = apr,  Pages = {116},  Title = {{CLASH: Joint Analysis of Strong-lensing, Weak-lensing Shear, and Magnification Data for 20 Galaxy Clusters}},  Volume = 821,  Year = 2016}  @article{Umetsu:2014,  Author = {{Umetsu}, K. and {Medezinski}, E. and {Nonino}, M. and {Merten}, J. and {Postman}, M. and {Meneghetti}, M. and {Donahue}, M. and {Czakon}, N. and {Molino}, A. and {Seitz}, S. and {Gruen}, D. and {Lemze}, D. and {Balestra}, I. and {Ben{\'{\i}}tez}, N. and {Biviano}, A. and {Broadhurst}, T. and {Ford}, H. and {Grillo}, C. and {Koekemoer}, A. and {Melchior}, P. and {Mercurio}, A. and {Moustakas}, J. and {Rosati}, P. and {Zitrin}, A.},  Journal = {\apj},  Month = nov,  Pages = {163},  Title = {{CLASH: Weak-lensing Shear-and-magnification Analysis of 20 Galaxy Clusters}},  Volume = 795,  Year = 2014}  @article{Fregeau:2004,  Author = {{Fregeau}, J.~M. and {Cheung}, P. and {Portegies Zwart}, S.~F. and {Rasio}, F.~A.},  Journal = {\mnras},         

\newcommand{\EHU}{Fisika Teorikoa, Zientzia eta Teknologia Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU}  \newcommand{\Basque}{IKERBASQUE, Basque Foundation for Science, Alameda Urquijo, 36-5 48008 Bilbao, Spain}  \newcommand{\Berkeley}{Department of Astronomy, University of California, Berkeley, CA 94720-3411, USA}  \newcommand{\Miller}{Miller Senior Fellow, Miller Institute for Basic Research in Science, University of California, Berkeley, CA 94720, USA}  \newcommand{\STScI}{Space Telescope Science Institute, 3700 San Martin Dr., Baltimore, MD 21218, USA}  \newcommand{\Ferrara}{Dipartimento di Fisica e Scienze della Terra, Universit\`{a} degli Studi di Ferrara, via Saragat 1, I-44122, Ferrara, Italy}  \newcommand{\INAF}{INAF, Osservatorio Astronomico di Bologna, via Ranzani 1, I-40127 Bologna, Italy} 

G.~B.~Caminha\altaffilmark{\affilref{Ferrara}},  G.~Chiriv{\`i}\altaffilmark{\affilref{MPIA}},  J.~M.~Diego\altaffilmark{\affilref{IFCA}},  A.~V.~Filippenko\altaffilmark{\affilref{Berkeley}}, A.~V.~Filippenko\altaffilmark{\affilref{Berkeley},\affilref{Miller}},  R.~J.~Foley\altaffilmark{\affilref{UCSC}},  O.~Graur\altaffilmark{\affilref{NYU},\affilref{AMNH},\affilref{CfA}},  C.~Grillo\altaffilmark{\affilref{Milan},\affilref{DARK}}, 

S.~H.~Suyu\altaffilmark{\affilref{MPIA},\affilref{ASIAA},\affilref{Garching}},  T.~Treu\altaffilmark{\affilref{UCLA},\affilref{Packard}},  B.~J.~Weiner\altaffilmark{\affilref{Arizona}},  L.~L.~R.~Williams\altaffilmark{\affilref{Minnesota}} L.~L.~R.~Williams\altaffilmark{\affilref{Minnesota}},  \& A.~Zitrin\altaffilmark{\affilref{BenGurion}}  } 

in the lensed background galaxies that would otherwise be undetectable.  The \fullmacs0416 cluster (hereafter \macs0416) is one of the most  efficient lenses in the sky, and in 2014 it was observed with high-cadence  imaging from the {\it  Hubble Space Telescope Telescope}  (\HST). Here we describe two unusual transient events that appeared behind \macs0416 in a strongly lensed galaxy at redshift  $z=1.0054\pm0.0002$. These transients---designated  \spockone and \spocktwo and collectively nicknamed ``Spock''---were  faster and fainter than any supernova (SN), but significantly more luminous  than a classical nova. They reached peak luminosities of $\sim10^{41}$  erg s$^{-1}$ ($M_{AB}<-14$ mag) in $\lesssim$5 $\lesssim5$  rest-frame days, then faded below detectability in roughly the same time span. Models of the  cluster lens suggest that these events may be {\it spatially}  coincident at the source plane, but are most likely not {\it 

As shown in Figure~\ref{fig:SpockDetectionImages}, the \spock events  appeared in \HST imaging collected as part of  the Hubble Frontier Fields (HFF) survey\cite{Lotz:2017}, a multi-cycle multicycle  program for deep imaging of 6 six  massive galaxy clusters and associated ``blank sky'' fields observed in parallel. \HST is not an efficient  wide-field survey telescope, and the HFF survey was not designed with  the discovery of peculiar extragalactic transients as a core 

time-delayed events that were missed by the \HST imaging of this  field.  %***Steve: Below, ``Supplementary Note~\ref{sec:LensModelVariations}''  % results in a question mark in the PDF file -- fix.  The models also predict absolute magnification values between about  $\mu=10$ and $\mu=200$ for both events. This wide range is due caused  primarily to by  the close proximity of the lensing critical curve (the region of theoretically infinite magnification) for sources at $z=1$.  The lensing configuration consistently adopted for this cluster  assumes that the arc comprises two mirror images of the host galaxy 

intersects both of the \spock locations (see Supplementary  Note~\ref{sec:LensModelVariations}). Such lensing configurations can  qualitatively reproduce the observed morphology of the \spock host  galaxy, but they are disfavored disfavoured  by a purely quantitative assessment of the positional strong-lensing constraints.  \subsection{Ruling Out Common Astrophysical Transients.} 

energy released by even the most extreme stellar  flare\cite{Karoff:2016} falls far short of the observed energy release  from the \spock transients. We can also rule out active galactic  nuclei (AGN), which are disfavored disfavoured  by the quiescence of the \spock sources between the two observed episodes and the absence of any of  the broad emission lines that are often observed in AGN.  Additionally, no x-ray emitting point source was detected in 7 epochs  from 2009 to 2014, including \Chandra X-ray Space Telescope imaging  that was coeval with the peak of infrared emission from \spocktwo.  %***Steve: Below, ``\citep{Fregeau:2004}''  % results in a question mark in the PDF file -- fix.  % In fact, ALL of the citations in this next paragraph lead to  % question marks in the PDF file...  Dynamically induced stellar collisions or close interactions in a  dense stellar cluster\citep{Fregeau:2004} could in principle produce a  series of optical transients. Similarly, the collision of a jovian 

that observed for the \spock events, although it is unclear whether  the UV/optical emission could match the observed \spock light curves.  These scenarios warrant further scrutiny, so that predictions of the  light curve light-curve  shape and anticipated rates can be more rigorously compared to the \spock observations.  Many types of stellar explosions can generate isolated transient 

(\Lpk) versus decline time\cite{Kulkarni:2007}.  Figure~\ref{fig:PeakLuminosityDeclineTime} shows our two-dimensional  constraints on \Lpk and the decline timescale \t2 (the time over which  the transient declines by 2 mag) 2~mag)  for the \spock events, accounting for the range of lensing magnifications ($10<\mu<200$)  derived from the cluster lens models. The \spockone and \spocktwo  events are largely consistent with each other, and if both events are 

transients\cite{Drout:2014}, Ca-rich SNe\cite{Kasliwal:2012}, and  luminous red novae\cite{Kulkarni:2007}.   %***Steve: Below, ``\cite{Li:1998,''  % results in a question mark in the PDF file -- fix.  The SN-like transients that come closest to matching the observed  light curves of the two \spock events are the ``kilonova'' class and  the ``.Ia'' class. Kilonovae are a category of optical/near-infrared 

explosion, as is the case for all normal SN explosions. For .Ia  events, even if an AM CVn system could produce repeated He shell  flashes of similar luminosity, the period of recurrence would be  $\sim10^5$ yr, making these effectively non-recurrent nonrecurrent  sources. Models invoking a stellar merger or the collision of a planet with its parent  star have a similar difficulty. In these cases the star may survive  the encounter, but the rarity of these collision events makes it  highly unlikely to detect two such transients from the same galaxy in  a single year.  %***Steve: Below, ``(see Supplementary Figure~\ref{fig:HostProperties}   % and Supplementary Table~\ref{tab:HostProperties})''  % results in question marks in the PDF file -- fix.  Although the two events were most likely not {\it temporally}  coincident, all of our lens models indicate that it is entirely  plausible for the two \spock events to be {\it spatially} coincident:  a single location at the source plane can be mapped to both \spock  locations to within the positional accuracy of the model  reconstructions ($\sim$0.6\arcsec ($\sim0.6$\arcsec  in the lens plane). This is supported by the fact that the host-galaxy colors colours  and spectral indices at each \spock location are indistinguishable within the uncertainties  (see Supplementary Figure~\ref{fig:HostProperties} and Supplementary  Table~\ref{tab:HostProperties}). Thus, to accommodate all of the 

\subsection{Luminous Blue Variable.}  %***Steve: Below, ``(see Supplementary   % Figure~\ref{fig:LBVLightCurveComparison})''  % results in a question mark in the PDF file -- fix.  The transient sources categorized categorised  as LBVs are the result of eruptions or explosive episodes from massive stars ($>10$ \Msun). The class is  exemplified by examples such as P Cygni, $\eta$ Carinae (\etaCar), and  S Doradus\cite{Smith:2011b, Kochanek:2012}. Although most giant LBV 

accounting for the \spock events as two separate episodes.  Two well-studied LBVs that provide a plausible match to the observed  \spock events are ``SN 2009ip''\cite{Maza:2009} 2009ip''\cite{Maza:2009, Pastorello:2013}  and NGC3432-LBV1\cite{Pastorello:2010}. Both exhibited multiple brief  transient episodes over a span of months to years. Unfortunately,  for these outbursts we have only upper limits on the decline 

In addition to those relatively short and very bright giant eruptions,  most LBVs also commonly exhibit a slower underlying variability. P  Cygni and \etaCar, for example, slowly rose and fell in brightness by  $\sim$1 to 2 $\sim1$--2  mag over a timespan of several years before and after their historic giant eruptions. Such variation has not been detected  at the \spock locations. Nevertheless, given the broad  range of light-curve behaviors behaviours  seen in LBV events, we cannot reject this class as a possible explanation for the \spock system.  The total radiated energy of the \spock events isin the range  $10^{44}  within the range of plausible values for a major LBV outburst. From  this measurement we can derive constraints on the luminosity of the 

cycle is directly observed, the object is classified as a recurrent  nova (RN).  %***Steve: Below, ``Supplementary  % Figure~\ref{fig:RecurrentNovaLightCurveComparison}  % results in a question mark in the PDF file -- fix.  The light curves of many RN systems in the Milky Way are similar in  shape to the \spock episodes, exhibiting a sharp rise ($<10$ days in  the rest-frame) and a similarly rapid decline (see Supplementary 

recurrence timescale for \spock in the rest frame is $120\pm30$ days,  which would be a singularly rapid recurrence period for a RN system.  The RNe in our own Galaxy have recurrence timescales of 10--98  years\cite{Schaefer:2010}. yr\cite{Schaefer:2010}.  The fastest measured recurrence timescale belongs to M31N 2008-12a, which has exhibited a new outburst every  year from 2008 through 2016\cite{Tang:2014, Darnley:2016}  Although this M31 record-holder demonstrates that very rapid  recurrence is possible, classifying \spock as a RN would still require  a very extreme mass-transfer rate to accommodate the $<1$ year $<1$~yr  recurrence.  %***Steve: Below, ``Supplementary Figure  % \ref{fig:RecurrentNovaRecurrenceComparison}  % results in a question mark in the PDF file -- fix.  Another major concern with the RN hypothesis is that the two \spock  events are substantially brighter than all known novae---perhaps by as  much as 2 orders of magnitude. This is exacerbated by the 

are caused by a single RN system, then that progenitor system would be  among the most extreme white dwarf binary systems yet known.  \subsection{Microlensing.}\label{sec:MicroLensing}  In the presence of strong gravitational lensing it is possible to 

first observed example of such a stellar caustic crossing  event\cite{Kelly:2017}. Such events may be expected to appear more  frequently in strongly lensed galaxies that have small angular  separation from the center centre  of a massive cluster. In such a situation, our line of sight to the lensed background galaxy passes through a  dense web of overlapping microlenses caused by the intracluster stars  distributed around the center centre  of the cluster. This has the effect of ``blurring'' the magnification profile across the cluster critical  curve, making it more likely that a single (and rare) massive star in  the background galaxy gets magnified by the required factor of 

high density of intracluster stars (see Methods)---comparable to that  observed for the MACS J1149 LS1 transient.  %***Steve: Below, ``(Supplementary  % Figure~\ref{fig:ColorCurves})  % results in a question mark in the PDF file -- fix.  The characteristic timescale of a canonical caustic-crossing event  would be on the order of hours or days (see Supplementary  Information), which is comparable to the timescales observed for the  \spock events. Gravitational lensing is achromatic as long as the size  of the source is consistent across the spectral energy distribution  (SED). This means that the color colour  of a caustic-crossing transient will be roughly constant. Using simplistic linear interpolations of the  observed light curves (see Methods), we find that the inferred color colour  curves for both \spock events are marginally consistent with this  expectation of an unchanging color colour  (Supplementary Figure~\ref{fig:ColorCurves}).  In the baseline lensing configuration adopted above---where a single 

counting the number of strongly lensed galaxies in the HFF clusters  that have sufficiently high magnification that a source with  $M_{V}=-14$ mag would be detected in \HST imaging. There are only six  galaxies that satisfy that criteria, criterion,  all with $0.5  for an average of 80 days. Treating \spockone and \spocktwo as  separate events leads to a very rough rate estimate of 1.5 \spock-like 

to make it exceedingly unlikely that two unrelated fast optical  transients would appear in the same galaxy in a single year.  Furthermore, we have observed no other transient events with similar  luminosities and light curve light-curve  shapes in high-cadence surveys of five other Frontier Fields clusters. Indeed, all other transients detected  in the primary HFF survey have been fully consistent with normal SNe.  Thus, we have no evidence to suggest that transients of this kind are 

surface explosions from a single RN, or (3) they were each caused by  the rapidly changing magnification as two unrelated massive stars  crossed over lensing caustics. We cannot make a definitive choice  between these hypotheses, principally due owing  to the scarcity of observational data and the uncertainty in the location of the  lensing critical curves. 

% BEGIN MAIN REFERENCES  \medskip  \begin{thebibliography}{100} % \bibliography{./bibliography/biblio}{}  \begin{thebibliography}{10}  \expandafter\ifx\csname url\endcsname\relax  \def\url#1{\texttt{#1}}\fi  \expandafter\ifx\csname urlprefix\endcsname\relax\def\urlprefix{URL }\fi 

\newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{837}},  \bibinfo{pages}{97} (\bibinfo{year}{2017}).  \bibitem{Caminha:2017}  \bibinfo{author}{{Caminha}, G.~B.} \emph{et~al.}  \newblock \bibinfo{title}{{A refined mass distribution of the cluster MACS  J0416.1-2403 from a new large set of spectroscopic multiply lensed sources}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{600}},  \bibinfo{pages}{A90} (\bibinfo{year}{2017}).  \bibitem{Pastorello:2013}  \bibinfo{author}{{Pastorello}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{Interacting Supernovae and Supernova Impostors: SN  2009ip, is this the End?}}  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{767}},  \bibinfo{pages}{1} (\bibinfo{year}{2013}).  \bibitem{Pastorello:2010}  \bibinfo{author}{{Pastorello}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{Multiple major outbursts from a restless luminous  blue variable in NGC 3432}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{408}},  \bibinfo{pages}{181--198} (\bibinfo{year}{2010}).  \bibitem{Zitrin:2013a}  \bibinfo{author}{{Zitrin}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{CLASH: The Enhanced Lensing Efficiency of the Highly 

\newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{461}},  \bibinfo{pages}{2126--2134} (\bibinfo{year}{2016}).  \bibitem{Caminha:2017}  \bibinfo{author}{{Caminha}, G.~B.} \emph{et~al.}  \newblock \bibinfo{title}{{A refined mass distribution of the cluster MACS  J0416.1-2403 from a new large set of spectroscopic multiply lensed sources}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{600}},  \bibinfo{pages}{A90} (\bibinfo{year}{2017}).  \bibitem{Karoff:2016}  \bibinfo{author}{{Karoff}, C.} \emph{et~al.}  \newblock \bibinfo{title}{{Observational evidence for enhanced magnetic 

\newblock \emph{\bibinfo{journal}{Nature Communications}}  \textbf{\bibinfo{volume}{7}}, \bibinfo{pages}{11058} (\bibinfo{year}{2016}).  \bibitem{Fregeau:2004}  \bibinfo{author}{{Fregeau}, J.~M.}, \bibinfo{author}{{Cheung}, P.},  \bibinfo{author}{{Portegies Zwart}, S.~F.} \& \bibinfo{author}{{Rasio},  F.~A.}  \newblock \bibinfo{title}{{Stellar collisions during binary-binary and  binary-single star interactions}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{352}},  \bibinfo{pages}{1--19} (\bibinfo{year}{2004}).  \bibitem{Metzger:2012}  \bibinfo{author}{{Metzger}, B.~D.}, \bibinfo{author}{{Giannios}, D.} \&  \bibinfo{author}{{Spiegel}, D.~S.}  \newblock \bibinfo{title}{{Optical and X-ray transients from planet-star  mergers}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{425}},  \bibinfo{pages}{2778--2798} (\bibinfo{year}{2012}).  \bibitem{Yamazaki:2017}  \bibinfo{author}{{Yamazaki}, R.}, \bibinfo{author}{{Hayasaki}, K.} \&  \bibinfo{author}{{Loeb}, A.}  \newblock \bibinfo{title}{{Optical-infrared flares and radio afterglows by  Jovian planets inspiraling into their host stars}}.  \newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{466}},  \bibinfo{pages}{1421--1427} (\bibinfo{year}{2017}).  \bibitem{Di-Stefano:2015}  \bibinfo{author}{{Di Stefano}, R.}, \bibinfo{author}{{Fisher}, R.},  \bibinfo{author}{{Guillochon}, J.} \& \bibinfo{author}{{Steiner}, J.~F.}  \newblock \bibinfo{title}{{Death by Dynamics: Planetoid-Induced Explosions on  White Dwarfs}}.  \newblock \emph{\bibinfo{journal}{ArXiv e-prints}} (\bibinfo{year}{2015}).  \bibitem{Kulkarni:2007}  \bibinfo{author}{{Kulkarni}, S.~R.} \emph{et~al.}  \newblock \bibinfo{title}{{An unusually brilliant transient in the galaxy 

\newblock \emph{\bibinfo{journal}{\nat}} \textbf{\bibinfo{volume}{500}},  \bibinfo{pages}{547--549} (\bibinfo{year}{2013}).  \bibitem{Jin:2016}  \bibinfo{author}{{Jin}, Z.-P.} \emph{et~al.}  \newblock \bibinfo{title}{{The Macronova in GRB 050709 and the GRB-macronova  connection}}.  \newblock \emph{\bibinfo{journal}{Nature Communications}}  \textbf{\bibinfo{volume}{7}}, \bibinfo{pages}{12898} (\bibinfo{year}{2016}).  \bibitem{Bildsten:2007}  \bibinfo{author}{{Bildsten}, L.}, \bibinfo{author}{{Shen}, K.~J.},  \bibinfo{author}{{Weinberg}, N.~N.} \& \bibinfo{author}{{Nelemans}, G.} 

\newblock \emph{\bibinfo{journal}{CBET}} \bibinfo{pages}{1}  (\bibinfo{year}{2009}).  \bibitem{Miller:2009}  \bibinfo{author}{{Miller}, A.~A.} \bibitem{Pastorello:2013}  \bibinfo{author}{{Pastorello}, A.}  \emph{et~al.} \newblock \bibinfo{title}{{A Previous Transient Consistent with the Location of  SN 2009ip Suggests that \bibinfo{title}{{Interacting Supernovae and Supernova Impostors:  SN 2009ip 2009ip,  is Not a Supernova}}.  \newblock \emph{\bibinfo{journal}{The Astronomer's Telegram}}  \textbf{\bibinfo{volume}{2183}} (\bibinfo{year}{2009}).  \bibitem{Li:2009}  \bibinfo{author}{{Li}, W.}, \bibinfo{author}{{Smith}, N.},  \bibinfo{author}{{Miller}, A.~A.} \& \bibinfo{author}{{Filippenko}, A.~V.}  \newblock \bibinfo{title}{{Rebrightening of SN 2009ip is Reminiscent of eta  Carinae Just Before 1843 Eruption}}. this the End?}}  \newblock \emph{\bibinfo{journal}{The Astronomer's Telegram}}  \textbf{\bibinfo{volume}{2212}} (\bibinfo{year}{2009}).  \bibitem{Berger:2009}  \bibinfo{author}{{Berger}, E.}, \bibinfo{author}{{Foley}, R.} \&  \bibinfo{author}{{Ivans}, I.} \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{767}},  \bibinfo{pages}{1} (\bibinfo{year}{2013}).  \bibitem{Pastorello:2010}  \bibinfo{author}{{Pastorello}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{SN 2009ip is an LBV Outburst}}. \bibinfo{title}{{Multiple major outbursts from a restless luminous  blue variable in NGC 3432}}.  \newblock \emph{\bibinfo{journal}{The Astronomer's Telegram}}  \textbf{\bibinfo{volume}{2184}} (\bibinfo{year}{2009}). \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{408}},  \bibinfo{pages}{181--198} (\bibinfo{year}{2010}).  \bibitem{Kilpatrick:2017}  \bibinfo{author}{{Kilpatrick}, C.~D.} \emph{et~al.} 

\newblock \emph{\bibinfo{journal}{\aj}} \textbf{\bibinfo{volume}{120}},  \bibinfo{pages}{2007--2037} (\bibinfo{year}{2000}).  \bibitem{Shafter:2011}  \bibinfo{author}{{Shafter}, A.~W.} \emph{et~al.}  \newblock \bibinfo{title}{{A Spectroscopic and Photometric Survey of Novae in  M31}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{734}},  \bibinfo{pages}{12} (\bibinfo{year}{2011}).  \bibitem{Schaefer:2010}  \bibinfo{author}{{Schaefer}, B.~E.}  \newblock \bibinfo{title}{{Comprehensive Photometric Histories of All Known 

\newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{786}},  \bibinfo{pages}{61} (\bibinfo{year}{2014}).  \bibitem{Darnley:2014}  \bibinfo{author}{{Darnley}, M.~J.} \emph{et~al.}  \newblock \bibinfo{title}{{A remarkable recurrent nova in M 31: The optical  observations}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{563}},  \bibinfo{pages}{L9} (\bibinfo{year}{2014}).  \bibitem{Darnley:2015}  \bibinfo{author}{{Darnley}, M.~J.} \emph{et~al.}  \newblock \bibinfo{title}{{A remarkable recurrent nova in M31: Discovery and  optical/UV observations of the predicted 2014 eruption}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{580}},  \bibinfo{pages}{A45} (\bibinfo{year}{2015}).  \bibitem{Henze:2015}  \bibinfo{author}{{Henze}, M.} \emph{et~al.}  \newblock \bibinfo{title}{{A remarkable recurrent nova in M 31: The 2010  eruption recovered and evidence of a six-month period}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{582}},  \bibinfo{pages}{L8} (\bibinfo{year}{2015}).  \bibitem{Darnley:2016}  \bibinfo{author}{{Darnley}, M.~J.} \emph{et~al.}  \newblock \bibinfo{title}{{M31N 2008-12a - The Remarkable Recurrent Nova in 

\end{thebibliography}  % END MAIN REFERENCES  % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%   % BEGIN POST-MATTER: ACKNOWLEDGMENTS, AUTHOR INFO, FIG LEGENDS  \clearpage  \medskip  Correspondence and requests for materials  should be addressed to S.A.R.~(email: [email protected]).  \medskip  {\bf Acknowledgments}  The authors thank Mario Livio and Laura Chomiuk for helpful discussion  of this paper, as well as Stephen Murray and Neil Gehrels for  assistance with the \Chandra and \Swift data, respectively.  Some/all Some  of the data presented in this paper were obtained from the Mikulski Archive for Space Telescopes (MAST).STScI is operated by the  Association of Universities for Research in Astronomy, Inc., under  NASA contract NAS5-26555.  Support for MAST for non-HST non-{\it HST}  data is provided by the NASA National Aeronautics and Space Administration (NASA)  Office of Space Science via grant NNX09AF08G NNX09AF08G,  and by other grants and contracts.  This research has made use of the NASA/IPAC Extragalactic Database  (NED) which is operated by the Jet Propulsion Laboratory, California  Institute of Technology, under contract with the National Aeronautics  and Space Administration. NASA.  Financial support for this work was provided to S.A.R., O.G., and  L.G.S. by NASA through grant HST-GO-13386 from the Space Telescope  Science Institute (STScI), which is operated by Associated  Universities for Research in Astronomy, Inc. (AURA), under NASA  contract NAS 5-26555. J.M.D J.M.D.  acknowledges support ofthe  projects AYA2015-64508-P (MINECO/FEDER, UE), AYA2012-39475-C02-01 AYA2012-39475-C02-01,  and the consolider project CSD2010-00064 funded by the Ministerio de Economia  y Competitividad. A.V.F. and P.L.K. are grateful for financial  assistance from the Christopher R. Redlich Fund, the TABASGO  Foundation, and NASA/STScI grants 14528, 14872, GO-14208, GO-14528, GO-14872,  and 14922. GO-14922; A.V.F. is also grateful to the Miller Institute for  Basic Research in Science (U.C. Berkeley).  The work of A.V.F. was conducted in part at the Aspen Center for Physics, which  is supported by NSF grant PHY-1607611; he thanks the Center for its  hospitality during the neutron stars workshop in June and July 2017.  R.J.F. and the UCSC group is are  supported in part by NSF grant AST-1518052 and from fellowships to R.J.F.  from the Alfred P.\ Sloan Foundation and the David and Lucile Packard Foundation to R.J.F. Foundation.  C.G. acknowledges support by VILLUM FONDEN Young Investigator  Programme through grantno.  10123. J.H. was supported by a VILLUM  FONDEN Investigator grant (project number 16599).  M.J. was supported by the Science and Technology Facilities Council (grantnumber  ST/L00075X/1) and used the DiRAC Data Centric system at Durham University, operated by the Institute for Computational Cosmology on behalf of the STFC DiRAC HPC Facility (\url{www.dirac.ac.uk}). M.J. was funded by BIS National E-infrastructure capital grant ST/K00042X/1, STFC capital grant ST/H008519/1,and  STFC DiRAC Operations grant ST/K003267/1 ST/K003267/1,  and Durham University. DiRAC is part of the National E-Infrastructure. R.K. was supported by Grant-in-Aid for JSPS Research Fellow (16J01302). M.O. acknowledges support in part by World Premier International Research Center Initiative (WPI Initiative), MEXT, Japan, and JSPS KAKENHI Grant Number 26800093 and 15H05892. J.R. acknowledges support from the ERC starting grant 336736-CALENDS. G.C. and S.H.S. thank the Max Planck Society for support through the Max Planck Research Group of S.H.S. T.T. and the The  GLASS team and T.T.  were funded by NASA through HST NASA/STScI  grant HST-GO-13459 from STScI. GO-13459.  L.L.R.W. would like to thank the  Minnesota Supercomputing Institute at the University of Minnesota for providing resources and support. \medskip  {\bf Author Contributions}   S.~A.~R.~designed S.A.R.~designed  observations, processed the \HST data, organized organised  the analysis analysis,  and wrote the manuscript. M.~B., T.~B., G.~B.~C., G.~C.,  J.~M.~D., A.~H., M.~J., R.~K., M.~O., J.~R., K.~S., S.~H.~S.,  L.~L.~R.~W., M.B., T.B., G.B.C., G.C.,  J.M.D., A.H., M.J., R.K., M.O., J.R., K.S., S.H.S.,  L.L.R.W.,  and A.~Z.~contributed A.Z.~contributed  to the lensing analysis with construction and/or interpretation of a cluster lens model. I.~B.,  G.~B., C.~G., S.~H., B.~M., A.~M., P.~R., K.~B.~S., J.~S., I.B.,  G.B., C.G., S.H., B.M., A.M., P.R., K.B.S., J.S.,  and B.~J.~W.~collected, B.J.W.~collected,  processed, and/or analyzed data on the host galaxy and other galaxies in the cluster field. R.~J.~F., S.~W.~J.,  P.~L.~K., C.~M., O.~G., J.~H., A.~G.~R., R.J.F., S.W.J.,  P.L.K., C.M., O.G., J.H., A.G.R.,  and L.-G.~S.~contributed L.-G.S.~contributed  to the evaluation of models of astrophysical transients. A.~V.~F. A.V.F.  and T.~T.~assisted T.T.~assisted  with the observational program design and editing of the manuscript.  \medskip 

\item \MPIA  \item \IFCA  \item \Berkeley  \item \Miller  \item \UCSC  \item \NYU  \item \AMNH 

\medskip  {\bf Competing Interests} The authors declare that they have no competing financial interests.  \medskip  {\bf Correspondence} Correspondence and requests for materials  should be addressed to S.A.R.~(email: [email protected]).  \medskip  {\bf Supplementary Information}   Supplementary figures, tables tables,  and notes are available online. % END OF POST-MATTER STUFF   % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  

gravitational lensing of the cluster. Two columns on the right side  show the discovery of the two transient events in optical and infrared  light, respectively. In these final two columns the top row is a  template image, the center centre  row shows the epoch when each transient appeared, and the bottom row is the difference image.}  \end{figure*}  \begin{figure*}  \caption{\label{fig:SpockDelayPredictions}  Predictions for the reappearance episodes of both \spockone  and \spocktwo due to caused by  gravitational lensing time delays, as listed in Table~\ref{tab:LensModelPredictions}. The top panel shows photometry  collected at the NW position (host-galaxy image 11.2) where the first  event (\spockone) appeared in January, January  2014. Optical measurements from ACS are in blue and green, and infrared observations  from WFC3-IR are in red and orange. Each blue bar in the lower panel shows  one lens model prediction for the dates when that same physical event 

\end{figure*}  \begin{figure*}[tbp]  \caption{  \label{fig:SpockDelayPredictions}  Predictions for the reappearance episodes of both \spockone  and \spocktwo due to gravitational lensing time delays, as listed in  Table~\ref{tab:LensModelPredictions}. The top panel shows photometry  collected at the NW position (host-galaxy image 11.2) where the first  event (\spockone) appeared in January, 2014. Optical  measurements from ACS are in blue and green, and infrared observations  from WFC3-IR are in red and orange. Each blue bar in the lower panel shows  one lens model prediction for the dates when that same physical event  (\spockone) would have also appeared in the SE location (galaxy image  11.1), due to gravitational lensing time delay. The lower panel plots  photometry from the SE position (11.1). On the right side we see the  second observed event (\spocktwo). The red bars above  show model predictions for when the NW host image 11.2 would have  exhibited the gravitationally delayed image of the \spocktwo\ event.  The width of each bar encompasses the 68\% confidence region for a  single model, and darker regions indicate an overlap from multiple  models.  }  \end{figure*}  \begin{figure*}[tbp]  \caption{  \label{fig:SpockCriticalCurves} 

\caption{   \label{fig:LightCurves}  Light curves for the two transient events, \spockone\ on the left  and \spocktwo\ on the right. Measured fluxes in micro-Janskys microJanskys  are plotted against rest-frame time at $z=1.0054$, relative to the time of  the peak observed flux for each event. The corresponding Modified  Julian Date (MJD) in the observer frame is marked on the top axis for 

\label{fig:PeakLuminosityDeclineTime}  Peak luminosity vs. decline time for \spock and assorted categories of  explosive transients. Observed constraints of the \spock events are  plotted as overlapping colored coloured  bands, along the left side of the figure. \spockone is shown as cyan and blue bands, corresponding to  independent constraints drawn from the F435W and F814W light curves,  respectively. For \spocktwo the scarlet and maroon bands show 

class from neutron star mergers. Grey bands in both panels show the  MMRD relation for classical novae. In the right panel, circles mark  the observed peak luminosities and decline times for classical novae,  while black `+' ``+''  symbols mark recurrent novae from our own Galaxy. The large cross labeled at the bottom shows the rapid recurrence rapid-recurrence  nova M31N 2008-12a. Each orange diamond marks a separate short transient event  from the two rapid LBV outburst systems, SN  2009ip\cite{Pastorello:2013} and NGC3432-LBV1 (also known as SN 

\colhead{$\lvert\mu_{\rm NW}\rvert$} & \colhead{$\lvert\mu_{\rm SE}\rvert$} &  \colhead{$\lvert\mu_{11.3}\rvert$} &   \colhead{$\Delta t_{\rm NW:SE}$} & \colhead{$\Delta t_{\rm NW:11.3}$} \\  \colhead{} & \colhead{} & \colhead{} & \colhead{} & \colhead{(days)} & \colhead{(years)}} \colhead{(yr)}}  \startdata  CATS & 196$^{+140}_{-53}$ & 46$^{+2}_{-1}$ & 3.3$^{+0.0}_{-0.0}$ & -1.7$^{+2.0}_{-1.9}$ & -3.7$^{+0.1}_{-0.2}$\\[0.5em]  GLAFIC & 29$^{+43}_{-10}$ & 84$^{+103}_{-38}$ & 3.0$^{+0.2}_{-0.2}$ & 4.1$^{+5.5}_{-3.4}$ & -5.0$^{+0.5}_{-0.6}$\\[0.5em] 

\subsection{Discovery.}\label{sec:Discovery}  The transient \spock\ was discovered in \HST imaging collected as part  of the Hubble Frontier Fields (HFF) survey (HST-PID: 13496, PI: (HST-PID GO-13496, PI  Lotz), a multi-cycle multicycle  program observing 6 six  massive galaxy clusters and associated ``blank sky'' parallel fields\cite{Lotz:2017}. Several  \HST observing programs have provided additional observations  supplementing the core HFF program. One of these is the FrontierSN  program (HST-PID: 13386, PI: (HST-PID GO-13386, PI  Rodney), which aims to identify and study explosive transients found in the HFF and related  programs\citet{Rodney:2015a}. The FrontierSN team discovered  \spock\ in two separate HFF observing campaigns on the galaxy cluster  \MACS0416. The first was an imaging campaign in January, January  2014 during which the MACS0416 cluster field was observed in the F435W, F606W, and  F814W optical bands using the Advanced Camera for Surveys Wide Field  Camera (ACS-WFC). The second concluded in August, August  2014, and imaged the cluster with the infrared detector of \HST's Wide Field Camera 3  (WFC3-IR) using the F105W, F125W, F140W, and F160W bands. 

subtracted from the astrometrically registered HFF images. In the case  of MACS0416, the templates were constructed from images collected as  part of the Cluster Lensing And Supernova survey with Hubble (CLASH,  HST-PID:12459, PI:Postman)\cite{Postman:2012}. HST-PID GO-12459, PI Postman)\cite{Postman:2012}.  The resulting difference images are visually inspected for new point sources, and any new transients of  interest (primarily SNe) are monitored with additional  \HST imaging or ground-based spectroscopic observations as needed. 

\subsection{Photometry.}\label{sec:Photometry}  %***Steve: Below, ``Tables~\ref{tab:spockonephot} and  % \ref{tab:spocktwophot}  % result in question marks in the PDF file -- fix.  The follow-up observations for \spock\ included \HST imaging  observations in infrared and optical bands using the WFC3-IR and  ACS-WFC detectors, respectively. Tables~\ref{tab:spockonephot} and  \ref{tab:spocktwophot} present photometry of the \spock\ events from  all available \HST observations. The flux was measured on difference  images, first using aperture photometry with a 0\farcs3 radius, and  also by fitting with an empirical point spread point-spread  function (PSF). The PSF model was defined using \HST observations of the G2V G2~V  standard star P330E, observed in a separate calibration program. A separate PSF  model was defined for each filter, but owing to the long-term  stability of the \HST PSF we used the same model in all epochs. All 

Spectroscopy of the \spock\ host galaxy was collected using three  instruments on the Very Large Telescope (VLT). Observations with the  VLT's X-shooter cross-dispersed echelle spectrograph\citep{Vernet:2011} were taken on October 19, 21 21,  and 23, 2014 (Program 093.A-0667(A), PI: PI  J. Hjorth) with the slit centered centred  on the position of \spocktwo. The total integration time was 4.0 hours 4.0~hr  for the NIR near-infrared (NIR)  arm of X-shooter, 3.6 hours 3.6~hr  for the VIS visual (VIS)  arm, and 3.9 hours 3.9~hr  for the UVB arm. The spectrum did not provide any detection of the  transient source itself (as we will see below, it had already faded  back to its quiescent state by that time). However, it did provide an 

two measures of the photometric redshift of the host: $z=1.00\pm0.02$  from the BPZ algorithm\citep{Benitez:2000}, and $z=0.92\pm0.05$ from  the EAZY program\citep{Brammer:2008}. Both were derived from \HST  photometry of the host images 11.1 and 11.2, spanning 4350--16000 4350--16,000  \AA. Additional VLT observations were collected using the Visible  Multi-object Spectrograph (VIMOS)\citep{LeFevre:2003}, as part of the  CLASH-VLT large program (Program 186.A-0.798; P.I.: PI  P. Rosati)\citep{Rosati:2014}, which collected $\sim$4000 $\sim4000$  reliable redshifts over 600 arcmin$^2$ in the \macs0416  field\citep{Grillo:2015,Balestra:2016}. These massively multi-object  observations could potentially have provided confirmation of the  redshift of the \spock host galaxy with separate spectral line  identifications in each of the three host-galaxy images. For the  \macs0416 field the CLASH-VLT program collected 1 hour 1~hr  of useful exposure time in good seeing conditions with the Low Resolution Blue  grism. Unfortunately, the wavelength range of this grism (3600-6700 (3600--6700  \AA) does not include any strong emission lines for a source at  $z=1.0054$, and the signal-to-noise ratio (S/N) was not sufficient to provide  any clear line identifications for the three images of the \spock host 

The VLT Multi Unit Spectroscopic Explorer (MUSE)\citep{Henault:2003,Bacon:2012} observed the NE portion of  the MACS0416 field---where the \spock host images are located---in  December, December  2014 for 2 hours 2~hr  of integration time (ESO program 094.A-0115, PI: PI  J.\,Richard). These observations also confirmed the redshift of the host galaxy with clear detection of the  \forbidden{O}{ii} doublet. Importantly, since MUSE is an integral  field spectrograph, these observations also provided a confirmation of 

matching \forbidden{O}{ii} line at the same wavelength\cite{Caminha:2017}.  A final source of spectroscopic information relevant to \spock is the  Grism Lens Amplified Survey from Space (GLASS; PID:  HST-GO-13459; PI:T. HST-PID  GO-13459; PI T.  Treu)\citep{Schmidt:2014,Treu:2015a}. The GLASS program collected slitless spectroscopy on the \macs0416 field using  the WFC3-IR G102 and G141 grisms on \HST, deriving redshifts for  galaxies down to a magnitude limit $H<23$. As with the VLT VIMOS 

\subsection{Gravitational Lens Models.}\label{sec:LensingModels}  The seven lens models used to provide estimates of the plausible range  of magnifications and time delays are as follows: follows.  \begin{itemize}  \item{\it CATS:} The model of \citeref{Jauzac:2014}, version 4.1,  generated with the {\tt LENSTOOL} software  (\url{http://projects.lam.fr/repos/lenstool/wiki})\citep{Jullo:2007}  using strong lensing constraints. This model parameterizes parametrises  cluster and galaxy components using pseudo-isothermal elliptical mass  distribution (PIEMD) density profiles\citep{Kassiola:1993,  Limousin:2007}. 

the {\tt GLAFIC} software  (\url{http://www.slac.stanford.edu/~oguri/glafic/})\citep{Oguri:2010b}  with strong-lensing constraints. This model assumes simply  parametrized parametrised  mass distributions, and model parameters are constrained using positions of more than 100 multiple images.  \item{\it GLEE:} A new model built using the {\tt GLEE}  software\citep{Suyu:2010b, Suyu:2012} with the same strong-lensing  constraints used in \citeref{Caminha:2017}, representing mass  distributions with simply parameterized parametrised  mass profiles. \item{\it GRALE:} A free-form, adaptive grid model developed using  the GRALE software tool\citep{Liesenborgs:2006, Liesenborgs:2007,  Mohammed:2014, Sebesta:2016}, which implements a genetic algorithm 

{\tt SWUnited} modeling method\citep{Bradac:2005, Bradac:2009}, in  which an adaptive pixelated grid iteratively adapts the mass  distribution to match both strong- and weak-lensing constraints.  Time delay Time-delay  predictions are not available for this model. \item{\it WSLAP+:} Created with the {\tt WSLAP+} software  (\url{http://www.ifca.unican.es/users/jdiego/LensExplorer})\citep{Sendra:2014}:  Weak and Strong Lensing Analysis Package plus member galaxies (Note: 

\MACS0416 in \citeref{Zitrin:2013a}.  \end{itemize}  Early versions of the {\it SWUnited}, {\it CATS}, {\it ZLTM} ZLTM},  and {\it GRALE} models were originally distributed as part of the Hubble  Frontier Fields lens modeling project  (\url{https://archive.stsci.edu/prepds/frontier/lensmodels/}), in 

models also made use of spectroscopic redshifts in the cluster  field\cite{Mann:2012, Christensen:2012, Grillo:2015, Caminha:2017}.  Input weak-lensing constraints were derived from data collected at the  Subaru Telescope\cite{Umetsu:2014, telescope\cite{Umetsu:2014,  Umetsu:2016} and archival imaging. \subsection{X-ray Nondetections.}\label{sec:Xray} 

detected near the locations of the \spock events (N. Gehrels, private  communication). The field was also observed by \Chandra with the  ACIS-I instrument for three separate programs. On June 7, 2009 it was  observed for GO program 10800770 (PI: (PI  H.\,Ebeling). It was revisited for GTO program 15800052 (PI: (PI  S.\,Murray) on November 20, 2013 and for GO program 15800858 (PI: (PI  C.\, Jones) on June 9, August 31, November 26, and December 17, 2014. These \Chandra images show no evidence for  an x-ray emitting point source near the \spock locations on those  dates (S. Murray, private communication).  The \Chandra observations that were closest in time to the observed  \spock events were those taken in August and November, November  2014. The August 31 observations were coincident with the observed peak of  rest-frame optical emission for the \spocktwo event (on MJD  56900). The November 26 observations correspond to 44 rest-frame days  after the peak of the \spocktwo event. If the \spock events are  UV/optical nova eruption, eruptions,  then these observations most likely did not coincide with the nova system's supersoft x-ray phase. For a RN system  the x-ray phase typically initiates after a short delay, and persists  for a span of only a few weeks. For example, the most rapid recurrence recurrent  nova known, M31N 2008-12a, has exhibited a supersoft x-ray phase from  6 to 18 days after the peak of the optical emission  \citep{Henze:2015a}.  \subsection{Light Curve \subsection{Light-Curve  Fitting.}\label{sec:LightCurves} Due %***Steve: Below, ``Supplementary Figure~\ref{fig:LinearLightCurveFits}''  % results in a question mark in the PDF file -- fix.  Owing  to the rapid decline timescale, no observations were collected for either event that unambiguously show the declining portion of the  light curve. Therefore, we must make some assumptions for the shape of  the light curve in order to quantify the peak luminosity and the  corresponding timescales for the rise and the decline. We first  approach this with a simplistic model that is piecewise linear in  magnitude vs vs.  time. Supplementary Figure~\ref{fig:LinearLightCurveFits} shows examples of the resulting fits for the two events. For each fit we  use only the data collected within 3 days of the brightest observed  magnitude, which allows us to fit a linear rise separately for the  F606W and F814W light curves for of  \spockone and the F125W and F160W light curves for of  \spocktwo. To quantify the covariance between the true peak brightness, the rise time time,  and the decline timescale, we use the following procedure: procedure.  \begin{enumerate}  \item make Make  an assumption for the date of peak, $t_{\rm pk}$; pk}$.  \item measure Measure  the peak magnitude at $t_{\rm pk}$ from the linear fit to the rising light-curve data; data.  \item assume Assume  the source reaches a minimum brightness (maximum magnitude) of 30 AB mag at the epoch of first observation after the  peak; peak.  \item draw Draw  a line for the declining light curve between the assumed peak and the assumed minimum brightness; brightness.  \item use Use  that declining light-curve line to measure the timescale for the event to drop by 2 mag, $t_2$; $t_2$.  \item make Make  a new assumption for $t_{\rm pk}$ and repeat. \end{enumerate}  %***Steve: Below, ``Supplementary Figure~\ref{fig:LinearLightCurveFits}''  % results in a question mark in the PDF file -- fix.  As shown in Supplementary Figure~\ref{fig:LinearLightCurveFits}, the resulting  piecewise linear fits are simplistic, but nevertheless approximately  capture the observed behavior behaviour  for both events. Furthermore, since this toy model is not physically motivated, it allows us to remain  agnostic for the time being as to the astrophysical source(s) driving  these transients. From these fits we can see that \spockone most  likely reached a peak magnitude between 25 and 26.5 AB mag in both  F814W and F435W, and had a decline timescale $t_2$ of less than 2 days  in the rest frame. The observations of \spocktwo provide less  stringent constraints, but we see that it had a peakmagnitude  between 23 and 26.5 AB mag in F160W and exhibited a decline time of less than  seven $<7$  days. These fits also illustrate the generic fact that a higher peak brightness corresponds to a longer rise time and a faster decline  timescale, independent of the specific model used. Changes to the  arbitrary constraints we placed on these linear fits do not 

At any assumed value for the time of peak brightness this linear  interpolation gives an estimate of the peak magnitude. We then convert  that to a luminosity (e.g., $\nu ($\nu  L_\nu$ in erg s$^{-1}$) by first correcting for the luminosity distance assuming a standard \LCDM  cosmology, and then accounting for an assumed lensing magnification,  $\mu$. The range of plausible lensing magnifications ($10<\mu<100$)  is derived from the union of our seven independent lens models. This  results in a grid of possible peak luminosities for each event as a  function of magnification and time of peak. As we are using linear  light curve light-curve  fits, the assumed time of peak is equivalent to an assumption for the decline time, which we quantify as $t_2$, the time  over which the transient declines by 2 magnitudes. mag.  \subsection{LBV Build-up Timescale and Quiescent Luminosity.}\label{sec:LBVbuildup} 

depends on the precise shape of the light  curve\cite{Smith:2011b}. Note that earlier work\cite{Smith:2011b} has  used $t_{1.5}$ instead of $t_2$, which amounts to a different  light-curve shape light-curve-shape  term, $\zeta$. Adopting \Lpk$\approx10^{41}$ erg s$^{-1}$ and \t2$\approx$1 day (as shown in  Fig.~\ref{fig:PeakLuminosityDeclineTime}), we find that the total  radiated energy is $E_{\rm rad}\approx10^{46}$ erg. A realistic range  for this estimate would span $10^{44}due owing  to uncertainties in the magnification, bolometric luminosity correction,  decline time, and light-curve shape. These uncertainties  notwithstanding, our estimate falls well within the range of plausible 

\subsection{RN Light-Curve Comparison.}\label{sec:RNLightCurves}  %***Steve: Below,   % ``Supplementary Figure~\ref{fig:RecurrentNovaLightCurveComparison}''  % results in a question mark in the PDF file -- fix. Ditto for the  % next figure referenced in that paragraph.  There are ten known RNe in the Milky Way galaxy, and seven of  these exhibit outbursts that decline rapidly, fading by two magnitudes 2~mag  in less than ten $<10$  days\citep{Schaefer:2010}. Supplementary Figure~\ref{fig:RecurrentNovaLightCurveComparison}  compares the \spock light curves to a composite light curve (the gray grey  shaded region), which encompasses the V band light curve $V$-band light-curve  templates\citep{Schaefer:2010} for all seven of these galactic Galactic  RN events. The Andromeda galaxy (M31) also hosts at least one RN with a  rapidly declining light curve. The 2014 eruption of this well-studied  nova, M31N 2008-12a, is shown as a solid black line in Supplementary  Figure~\ref{fig:RecurrentNovaLightCurveComparison}, fading by 2 mag 2~mag  in $<3$ days. This comparison demonstrates that the rapid decline of  both of the \spock transient events is fully consistent with the  eruptions of known RNe in the local universe.  \subsection{RN Luminosity and Recurrence Period.}\label{sec:RNLuminosityRecurrence}  %***Steve: Below, ``Figure~\ref{fig:RecurrentNovaRecurrenceComparison}''  % results in a question mark in the PDF file -- fix. Ditto for the  % next figure referenced in that paragraph.  To examine the recurrence period and peak brightness of the \spock  events relative to RNe, we rely on a pair of papers that evaluated an  extensive grid of nova models through multiple cycles of outburst and 

recurrence period as fast as one year is expected only for a RN system  in which the primary white dwarf is both very close to the  Chandrasekhar mass limit (1.4 \Msun) and also has an extraordinarily  rapid mass transfer mass-transfer  rate ($\sim10^{-6}$ \Msun yr$^{-1}$). The models of \citeref{Yaron:2005} suggest that such systems should have a very  low peak amplitude (barely consistent with the lower limit for \spock)  and a low peak luminosity ($\sim$100 ($\sim100$  times less luminous than the \spock events).  The closest analog for the \spock events from the population of known  RN systems is the nova M31N\,2008-12a. \citeref{Kato:2015} provided a  theoretical model that can account for the key observational  characteristics of this remarkable nova: the very rapid recurrence  timescale ($<$1 yr), fast optical light curve ($\t2\sim2$ ($\t2\approx2$  days), and short supersoft x-ray phase (6-18 (6--18  days after optical outburst)\citep{Henze:2015a}. To match these observations,  \citeref{Kato:2015} invoke a 1.38 \Msun white dwarf primary,  drawing mass from a companion at a rate of $1.6\times10^{-7}$ \Msun 

light (ICL). The surface brightness is then converted to a projected  stellar mass surface density by assuming a  Chabrier\cite{Chabrier:2003} initial mass function and an  exponentially declining star formation star-formation  history. This procedure leads to an estimate for the intracluster stellar mass of $\log  (\Sigma_{\star} / (\Msun\,{\rm kpc}^{-2})) = 6.9\pm0.4$. This is  very similar to the value of $6.8^{+0.4}_{-0.3}$ inferred for the  probable caustic crossing caustic-crossing  star M1149 LS1\cite{Kelly:2017}. \subsection{Colour Curves.}\label{sec:ColorCurves}  \subsection{Color Curves.}\label{sec:ColorCurves} %***Steve: Below, ``Supplementary Figure~\ref{fig:ColorCurves}''  % results in a question mark in the PDF file -- fix.  At $z=1$ the observed optical and infrared bands translate to  rest-frame ultraviolet (UV) and optical wavelengths, respectively. To  derive rest-frame UV and optical colors colours  from the observed photometry, we start with the measured magnitude in a relatively blue band (F435W  and F606W for \spockone and F105W, F125W, F140W for \spocktwo). We  then subtract the coeval magnitude for a matched red band (F814W for  \spockone, F125W or F160W for \spocktwo), derived from the linear fits  to those bands. To adjust these to rest-frame filters, we apply K  corrections\citep{Hogg:2002}, K-corrections\citep{Hogg:2002},  which we compute by defining a crude SED via linear interpolation between the observed  broad bands for each transient event at each every  epoch. For consistency with past published results, we include in each K correction K-correction  a transformation from AB to Vega-based magnitudes. The resulting UV and  optical colors colours  are plotted in Supplementary Figure~\ref{fig:ColorCurves}. Both \spockone and \spocktwo show little or no color colour  variation over the period where color colour  information is available. This lack of color colour  evolution is compatible with all three of the primary hypotheses  advanced, as it is possible to have no discernible color colour  evolution from either an LBV or RN over this short time span, and microlensing  events inherently exhibit an unchanging color. colour.  If these two events are from a single source then one could construct  a composite SED from rest-frame UV to optical wavelengths by combining 

\subsection{Rates.}\label{sec:RatesMethods}  %***Steve: Below, ``Figure~\ref{fig:StronglyLensedGalaxies}''  % results in a question mark in the PDF file -- fix.  To derive a rough estimate of the rate of \spock-like transients, we  first define the set of strongly lensed galaxies in which a similarly  faint and fast transient could have been detected in the HFF 

out in the CLASH and CANDELS programs\cite{Graur:2014,Rodney:2014}.  For a transient with peak brightness $M_{V}>-14$ mag to be detected,  the host galaxy must be amplified by strong lensing with a  magnification $\mu>20$ at $z\sim1$, $z\approx1$,  growing to $\mu>100$ at $z\sim2$. $z\approx2$.  Using photometric redshifts and magnifications derived from the GLAFIC  lens models of the six HFF clusters, we find $N_{\rm gal}=6$ galaxies  that satisfy this criterion, with $0.5 

entirety of the primary HFF campaigns on each cluster, but excludes  all of the ancillary data collection periods from supplemental \HST  imaging programs. The average control time for an HFF cluster is  $t_{c} = 0.22$ years 0.22$~yr  (80 days). Treating each \spock event as a separate detection, we can derive a rate estimate using $R = 2 /  (N_{\rm gal}\,t_c)$. This yields $R=1.5$ events galaxy$^{-1}$  year$^{-1}$. yr$^{-1}$.  Future examination of the rate of such transients should consider the  total stellar mass and the star-formation rates of the galaxies 

% DATA AVAILABILITY STATEMENT  The data that support the plots within this paper and other findings  of this study are available from the corresponding author upon  reasonable request. All \HST data utilized utilised  for this work are available through the Mikulski Archive for Space Telescopes (MAST). 

\providecommand{\eprint}[2][]{\url{#2}}  \makeatletter  \addtocounter{\@listctr}{47} \addtocounter{\@listctr}{48}  \makeatother  \bibitem{Rodney:2015a} 

\newblock \emph{\bibinfo{journal}{\mnras}} \textbf{\bibinfo{volume}{427}},  \bibinfo{pages}{1953--1972} (\bibinfo{year}{2012}).  \bibitem{Umetsu:2014}  \bibinfo{author}{{Umetsu}, K.} \emph{et~al.}  \newblock \bibinfo{title}{{CLASH: Weak-lensing Shear-and-magnification Analysis of 20 Galaxy Clusters}}. \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{795}},  \bibinfo{pages}{163--188} \bibinfo{pages}{163}  (\bibinfo{year}{2014}). \bibitem{Umetsu:2016} \bibinfo{author}{{Umetsu}, K.} \emph{et~al.} \newblock \bibinfo{title}{{CLASH: Joint Analysis of Strong-lensing, Weak-lensing Shear, and Magnification Data for 20 Galaxy Clusters}}. \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{821}},  \bibinfo{pages}{116--145} \bibinfo{pages}{116}  (\bibinfo{year}{2016}). \bibitem{Henze:2015a}  \bibinfo{author}{{Henze}, M.} \emph{et~al.} 

\newblock \emph{\bibinfo{journal}{\aj}} \textbf{\bibinfo{volume}{148}},  \bibinfo{pages}{13} (\bibinfo{year}{2014}).  \bibitem{Sersic:1963}  \bibinfo{author}{{S{\'e}rsic}, J.~L.}  \newblock \bibinfo{title}{{Influence of the atmospheric and instrumental  dispersion on the brightness distribution in a galaxy}}.  \newblock \emph{\bibinfo{journal}{Boletin de la Asociacion Argentina de  Astronomia La Plata Argentina}} \textbf{\bibinfo{volume}{6}},  \bibinfo{pages}{41} (\bibinfo{year}{1963}).  \bibitem{Akaike:1974}  \bibinfo{author}{Akaike, H.}  \newblock \bibinfo{title}{A new look at the statistical model identification}.  \newblock \emph{\bibinfo{journal}{Automatic Control, IEEE Transactions on}}  \textbf{\bibinfo{volume}{19}}, \bibinfo{pages}{716--723}  (\bibinfo{year}{1974}).  \bibitem{Hemmati:2014}  \bibinfo{author}{{Hemmati}, S.} \emph{et~al.}  \newblock \bibinfo{title}{{Kiloparsec-scale Properties of Emission-line  Galaxies}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{797}},  \bibinfo{pages}{108} (\bibinfo{year}{2014}).  \bibitem{Wambsganss:2001}  \bibinfo{author}{{Wambsganss}, J.}  \newblock \bibinfo{title}{{Quasar Microlensing}}.  \newblock In \bibinfo{editor}{{Brainerd}, T.~G.} \&  \bibinfo{editor}{{Kochanek}, C.~S.} (eds.)  \emph{\bibinfo{booktitle}{Gravitational Lensing: Recent Progress and Future  Go}}, vol. \bibinfo{volume}{237} of \emph{\bibinfo{series}{Astronomical  Society of the Pacific Conference Series}}, \bibinfo{pages}{185}  (\bibinfo{year}{2001}).  \bibitem{Kochanek:2004}  \bibinfo{author}{{Kochanek}, C.~S.}  \newblock \bibinfo{title}{{Quantitative Interpretation of Quasar Microlensing  Light Curves}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{605}},  \bibinfo{pages}{58--77} (\bibinfo{year}{2004}).  \bibitem{Paczynski:1986}  \bibinfo{author}{{Paczynski}, B.}  \newblock \bibinfo{title}{{Gravitational microlensing by the galactic halo}}.  \newblock \emph{\bibinfo{journal}{\apj}} \textbf{\bibinfo{volume}{304}},  \bibinfo{pages}{1--5} (\bibinfo{year}{1986}).  \bibitem{Alcock:1993}  \bibinfo{author}{{Alcock}, C.} \emph{et~al.}  \newblock \bibinfo{title}{{Possible gravitational microlensing of a star in the  Large Magellanic Cloud}}.  \newblock \emph{\bibinfo{journal}{\nat}} \textbf{\bibinfo{volume}{365}},  \bibinfo{pages}{621--623} (\bibinfo{year}{1993}).  \bibitem{Aubourg:1993}  \bibinfo{author}{{Aubourg}, E.} \emph{et~al.}  \newblock \bibinfo{title}{{Evidence for gravitational microlensing by dark  objects in the Galactic halo}}.  \newblock \emph{\bibinfo{journal}{\nat}} \textbf{\bibinfo{volume}{365}},  \bibinfo{pages}{623--625} (\bibinfo{year}{1993}).  \bibitem{Udalski:1993}  \bibinfo{author}{{Udalski}, A.} \emph{et~al.}  \newblock \bibinfo{title}{{The optical gravitational lensing experiment.  Discovery of the first candidate microlensing event in the direction of the  Galactic Bulge}}.  \newblock \emph{\bibinfo{journal}{ACTAA}} \textbf{\bibinfo{volume}{43}},  \bibinfo{pages}{289--294} (\bibinfo{year}{1993}).  \bibitem{Chang:1979}  \bibinfo{author}{{Chang}, K.} \& \bibinfo{author}{{Refsdal}, S.}  \newblock \bibinfo{title}{{Flux variations of QSO 0957+561 A, B and image  splitting by stars near the light path}}.  \newblock \emph{\bibinfo{journal}{\nat}} \textbf{\bibinfo{volume}{282}},  \bibinfo{pages}{561--564} (\bibinfo{year}{1979}).  \bibitem{Chang:1984}  \bibinfo{author}{{Chang}, K.} \& \bibinfo{author}{{Refsdal}, S.}  \newblock \bibinfo{title}{{Star disturbances in gravitational lens galaxies}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{132}},  \bibinfo{pages}{168--178} (\bibinfo{year}{1984}).  \bibitem{Planck:2016}  \bibinfo{author}{{Planck Collaboration}} \emph{et~al.}  \newblock \bibinfo{title}{{Planck 2015 results. XIII. Cosmological  parameters}}.  \newblock \emph{\bibinfo{journal}{\aap}} \textbf{\bibinfo{volume}{594}},  \bibinfo{pages}{A13} (\bibinfo{year}{2016}).  \end{thebibliography}  \end{document}