Chris Spencer edited untitled.tex  over 8 years ago

Commit id: ebc6c818ad784bb089d1d463f4735ae6b3f46ea7

deletions | additions      

       

\section{History of Photonics Relevant to CMOS Integrated circuits}  In 1909, Arnold Sommerfeld published his proposed analytical proof of surface polarization waves [3] marking in our history of Photonics the cornerstone of the all nanophotonics is motivated. Sixty years following Sommerfeld’s publication, Chinese physicist Charles Kao published a solution for guiding Sommerfeld’s surface excitations using optical fiber [4] which in 2009 he would also receive a Nobel Prize. Today nanophotonic research is being conducted by many countries for many applications, yet their approach is surprising similar. The majority of resources and funding for nanophotonics is the development of better materials. This point will be further evident in following sections, but for now it should be mentioned that of those resources only a marginal portion is allocated in the direction of CMOS integration. Initially, this discovery was quiet shocking for two big reasons. First of all, in recent years Moore’s law’s famous exponential curve of computing performance and affordability over time has become less exponentially improving and we know one major cause of the bottleneck occurring in integrated circuits is interconnects. Illustrated in figure 1 is a comparison of the performance capability of optical fibers vs coaxial cables. Also in figure 1 is a relation of current nanophotonic waveguide capability compared to optical fiber which has strong implications for what is possible on chips and the potential need for an enhancing technology. Secondly, the CMOS business has been so profitable and so heavily investing in machinery that it seems logical to continue investing as a lot of the infrastructure exists. The answer to my the  initial shock is illustrated in figures 2. CMOS compatible nanophotonics occupies an extremely narrow space on a wide spectrum of possible use cases and therefore to expect so much of the resources to be allocated so narrowly this early in such a young immature science could greatly delay the achievable possibilities. The following sections, however, will discuss the results of the resources that were allocated for CMOS integrated nanophotonics and the modules that are in development to address Moore’s law.